Піцель (Мондріан) Головоломка


20

Для отримання додаткової інформації дивіться це відео та перейдіть до A276523, щоб отримати відповідну послідовність.

Головоломка Мондріана (для цілого числа n) така:

Помістіть неконгруентні прямокутники в n*nквадратну сітку. Яка найменша різниця можлива між найбільшим та найменшим прямокутником?

Адже 6оптимальна різниця M(6)є 5і може бути продемонстрована так:

 ___________
| |S|_______|
| | |   L   |
| |_|_______|
| |     |   |
| |_____|___|
|_|_________| (fig. I)

Найбільший прямокутник (L) має площу 2 * 4 = 8, а найменший прямокутник (S) - площу 1 * 3 = 3. Тому різниця є 8 - 3 = 5.

Майте на увазі, що на даний момент не знайдено оптимальних рішень для n > 44.

Ваше завдання - створити програму, яка генерує сітку Mondrian, яка містить (неоптимальне) рішення із заданим цілим числом n.

Вас перевірять на числах від 100 до 150. Вашим балом за кожен тест буде різниця між найбільшим та найменшим прямокутником. Ваш загальний бал - це сума ваших балів за всі тести від 100 до 150.

Ви повинні представити свій результат так:

{number}
{grid}

Де numberбал (різниця між найбільшим і найменшим), і gridчи:

  • Багаторядковий рядок, або
  • Двовимірний список.

Сітка ОБОВ'ЯЗКОВО чітко показує, де починається і закінчується прямокутник.

Правила:

  • Ваша програма повинна відповідати вашій відповіді.
  • Програма повинна вивести значення для будь-якого числа між 100 і 150 протягом 1 години на сучасному ноутбуці.
  • Ваша програма повинна генерувати одне і те ж рішення для цілого числа nщоразу, коли програма запускається.
  • Ви повинні надати посилання на результати всіх 51 рішення (використовуючи Pastebin, Github Gist ... все, щоправда).
  • Ви повинні мати щонайменше два прямокутники на квадратній сітці для свого рішення.

1
OEIS A276523 . Зауважте, що верхні межі, перелічені там, дуже легко покращити.
Пітер Тейлор

Ха. Тиждень тому я дивився таке ж відео, і моя перша думка намагалася скласти програму, щоб його вирішити. Я врешті-решт повністю забув про це.
Carcigenicate

4
Просто для того, щоб поставити його там, нам потрібна відповідь Піта. Може бути
щедротою

Відповіді:


11

Піт, 9625

(Це, нарешті, працює!)

Народ вимагав цього, так ось воно. Це надзвичайно наївне рішення (по суті таке ж, як вільні верхні межі на сторінці OEIS): воно ділить кожен квадрат на лише два прямокутники.

Цей суть містить дані в двох файлах:

  • Вихід програми (використовуючи npiet v1.3) для всіх необхідних входів. Зауважте, що я вловлював лише stdout, тому ?запит на введення вводиться, одразу після цього виводиться оцінка, а потім сітка.
  • Джерело "псевдоскладання" я використовував для планування програми.

Піт-розчин, розмір коделу 10

Пояснення

Ця програма приймає єдине число Nяк вхід. Якщо число непарне, оцінка - це число; якщо навіть, то бал удвічі більший.

Після виведення балу решту лівої частини програми витрачається на заповнення стека п'ятьма партіями наступної інформації:

  • Ширина сітки (яка є N)
  • Ряд рядків для друку
  • Символ для друку через сітку ( _або пробіл)
  • Символ для друку на кожному краї сітки (або пробіл, або |)

Права частина програми приймає кожен набір з чотирьох значень і друкує ту частину сітки.


Ви все одно отримаєте щедрості!
NoOneIsHere

Для розміщення рішення повинні бути дійсними.
mbomb007

@ mbomb007 Добре, я цього не усвідомлював. Сподіваюся, це завершиться за 7 днів.
NoOneIsHere

6

C 6108

Для цього використовується рекурсивна (дійсно ітеративна) версія мінімального рішення. Замість того, щоб ділити квадрат на два прямокутники, де один трохи більше половини площі, він ділить його на N прямокутників. Тож перший прямокутник трохи більший за 1/Nзагальну площу. Потім, взявши залишок, програма розбиває прямокутник, трохи більший, ніж 1/(N-1)залишок, і так далі, поки він просто не візьме залишок як останній прямокутник. Прямокутники відрізаються від залишку за спіраллю за годинниковою стрілкою, тому спочатку вгорі, потім праворуч тощо.

Оскільки це дуже прямий метод замість пошуку широкого простору, він запускається швидко - займає близько 25 секунд (на Raspberry Pi), щоб переглянути 74 рішення для кожної заданої задачі.

Моя мета - використовувати ці результати для кращого інформування алгоритму пошуку для більш складного підходу.

Вихід дає бал і як (ascii) малюнок, так і координати для вершин прямокутників. Вершини розташовані за годинниковою стрілкою, починаючи з верхнього лівого кута відповідного прямокутника.

Розроблено за допомогою gcc 4.9.2-10.

Результати на https://github.com/JaySpencerAnderson/mondrian

Код:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct {
    int y, x, height, width;
} rectangle;
#define min(x,y) (((x)<(y))?(x):(y))
#define max(x,y) (((x)>(y))?(x):(y))
#ifndef TRUE
#define TRUE -1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define MAXCOUNT 75

void initstack(rectangle *s, int n){
    int i;
    for(i=0;i<n;i++){
        s[i].y=s[i].x=s[i].height=s[i].width=0;
    }
}
int valid(rectangle *s,int n){
    int i,j;
    for(i=0;i<n-1;i++){
        for(j=i+1;j<n;j++){
            if(min(s[i].height,s[i].width) == min(s[j].height,s[j].width) && max(s[i].height,s[i].width) == max(s[j].height,s[j].width)){

                initstack(s, n);
                return FALSE;
            }
        }
    }
    return TRUE;
}
int horizontal(rectangle s, int y, int x){
    if(s.y == y && x >= s.x && x < s.x+s.width){
        return TRUE;
    }
    else if(s.y+s.height == y && x >= s.x && x < s.x+s.width){
        return TRUE;
    }
    return FALSE;
}
int vertical(rectangle s, int y, int x){
    if(s.x == x && y > s.y && y <= s.y+s.height){
        return TRUE;
    }
    else if(s.x+s.width == x && y > s.y && y <= s.y+s.height){
        return TRUE;
    }
    return FALSE;
}
void graph(rectangle *s, int n, int side){
    unsigned int row,col,i;
    unsigned int line;
    printf("{\n");
/* vertical lines take precedence since "1" cell is 1 char high and 2 char wide */
    for(row=0;row<=side;row++){
        for(col=0;col<=side;col++){
            line=0;
/* Possible values are "  " (0), "__" (1), "| " (2) or "|_" (3). */
            for(i=0;i<n;i++){
                if(horizontal(s[i],row,col)){
                    line|=1;
                }
                if(vertical(s[i],row,col)){
                    line|=2;
                }
            }

            switch(line){
            case 0: printf("  ");   break;
            case 1: printf("__");   break;
            case 2: printf("| ");   break;
            case 3: printf("|_");   break;
            default: printf("##");  break;
            }
        }
        printf("\n");
    }
    printf("}\n");
}
unsigned int score(rectangle *s, int n){
    int i;
    unsigned int smallest,biggest;

    smallest=biggest=s[0].width*s[0].height;

    for(i=0;i<n;i++){
        smallest=min(smallest,s[i].width*s[i].height);
        biggest=max(biggest,s[i].width*s[i].height);
    }
    return biggest-smallest;
}
void report(rectangle *s, int n, int side){
    int i;

    printf("{%d}\n",score(s,n));
    graph(s, n, side);
    printf("{\n");
    for(i=0;i<n;i++){
        printf("[%d,%d] ",s[i].x,s[i].y);
        printf("[%d,%d] ",s[i].x+s[i].width,s[i].y);
        printf("[%d,%d] ",s[i].x+s[i].width,s[i].y+s[i].height);
        printf("[%d,%d]\n",s[i].x,s[i].y+s[i].height);
    }
    printf("\n}\n");
}
void locateandrotate(rectangle *stack, int n){
    unsigned int scratch,i;
    for(i=1;i<n;i++){
        /* Odd rectangles are on their side */
        if(i&1){
            scratch=stack[i].width;
            stack[i].width=stack[i].height;
            stack[i].height=scratch;
        }
        switch(i%4){
        case 0:
            stack[i].x=stack[i-1].x+stack[i-1].width;
            stack[i].y=stack[i-1].y;
            break;
        case 1:
            stack[i].x=stack[i-1].x+stack[i-1].width-stack[i].width;
            stack[i].y=stack[i-1].y+stack[i-1].height;
            break;
        case 2:
            stack[i].x=stack[i-1].x-stack[i].width;
            stack[i].y=stack[i-1].y+stack[i-1].height-stack[i].height;
            break;
        case 3:
            stack[i].x=stack[i-1].x;
            stack[i].y=stack[i-1].y-stack[i].height;
            break;
        default:
            printf("Woops!\n");
        }
    }
}
/* These are the height and width of the remaining area to be filled. */
void door(rectangle *stack, unsigned int height, unsigned int width, unsigned int n, unsigned int totaln){
    unsigned int thisheight, thiswidth;
    int i;

    for(i=0;i<totaln;i++){
/* Not yet used */
        if(stack[i].width == 0){
            stack[i].width=width;
            if(i+1 == totaln){
                stack[i].height=height;
            }
            else {
/* Sometimes yields congruent rectangles, as with 16x16, 8 rectangles */
                if(totaln&1 || height%n){
                    int j;
                    stack[i].height=height-(((n-1)*height)/n);
                }
                else {
                    stack[i].height=height-((((n-1)*height)-1)/n);
                }
                /* Exchange height and width to rotate */
                door(stack,width,height-stack[i].height,n-1,totaln);
            }
            return;
        }
    }
}
void usage(char *argv[],int side){
    printf("Usage: %s -s <side-length>\n",argv[0]);
    printf("Purpose: Calculate N non-congruent rectangles arranged to exactly fill a square with the specified side length.\n");
    printf("Defaults: %s -s %d\n",argv[0],side);
    exit(0);

}
int main(int argc, char *argv[]){
    int side=16;
    int n,bestscore,bestn=2;
    int status;

    while((status=getopt(argc,argv,"s:h")) >= 0){
        switch(status){
        case 's':
            sscanf(optarg,"%d",&side);
            break;
        case 'h':
        default:
            usage(argv,side);
        }
    }

    bestscore=side+side;

    rectangle stack[MAXCOUNT],best[MAXCOUNT];
    for(n=2;n<=MAXCOUNT;n++){
        initstack(stack,MAXCOUNT);
        door(stack, side, side, n, n);
        locateandrotate(stack, n);
        if(valid(stack,n)){
            if(score(stack,n) < bestscore){
                bestn=n;
                initstack(best,MAXCOUNT);
                door(best, side, side, n, n);
                locateandrotate(best, n);

                bestscore=score(best,n);
            }
        }
    }
    report(best,bestn,side);
}

1
Гммм ... ви могли б дати остаточну оцінку в шапці? Спасибі. Хоча приємне рішення - не очікував рішення (бо ніхто не відповідав кілька днів).
clismique

1

С - 2982

Ця програма реалізує пошук за допомогою широкого набору результатів. Важливою частиною того, щоб зробити цей пошук практичним, було невдачі та / або не йти поганими шляхами.

Це генерує набір прямокутників, які слід враховувати для рішення. Набір генерованих прямокутників уникає розмірів, які не були б корисними. Наприклад, якщо програма намагається знайти рішення для площі 128x128, розділеної на 8 прямокутників, вона генерує прямокутник розміром 128x16. Це не призведе до того, що це 120x17, оскільки немає можливості створити прямокутник, розміром 8 шириною, який заповнить проміжок наприкінці 120.

Початкова стратегія розміщення прямокутників - розміщення їх по внутрішній частині периметра квадрата (функція побудови). Таким чином алгоритм отримує досить швидкий зворотний зв'язок у кожному куті щодо того, чи є проблема з обраною послідовністю. Розміщуючи прямокутники, логіка продовжує стежити, щоб побачити, чи виникають якісь прогалини простору, які занадто вузькі для прямокутника. Після успішного заповнення периметра стратегія змінюється на спробу співставити простір, що залишився, з рештою прямокутниками (функція відповідності).

Ще одне, що може зацікавити, - це те, що вони реалізують транзакції з відкатом для стеків прямокутників.

Ця програма не намагається знайти найкращу можливу форму. Він отримує бюджет (64) і закриває, коли знаходить перше рішення. Якщо він ніколи не знайде рішення, ми накопичуємо бюджет (на 16) і повторюємо спробу. Час, необхідний (для ноутбука Dell з процесором I7), коливався приблизно від хвилини до 48 хвилин за 150 на стороні (149 на стороні займало менше 2 хвилин). В усіх 51 рішеннях було використано 11 прямокутників. Оцінки 51 рішення складали від 41 до 78. Причини, за якими я використав 11 прямокутників, полягали в тому, що оцінка була нижчою, ніж при меншій кількості прямокутників, і, схоже, на 12 прямокутників знадобиться набагато більше, ніж відведена година.

Рішення та код можна знайти на веб- сайті https://github.com/JaySpencerAnderson/mondrian . Вони є двома файлами my4 *.

До речі, якщо ви компілюєте це в "my4" і виконайте його так: "./my4 -h", воно дасть вам використання. Якщо ви хочете бачити, як це працює вдалині, спробуйте щось на кшталт "./my4 -l 50 -n 8". Якщо ви зміните один "#if 0" на "#if 1", він видасть залишок місця на екрані. Якщо ви хочете змінити це для відображення прямокутників, знайдіть одне місце, де код виконує "графік (пробіл, сторона)" та замініть його на "графік (сторона виклику, сторона)". Я б також запропонував змінити початковий бюджет з 64 на 32, якщо ви хочете пограти з рішеннями для квадратів, шириною яких приблизно 50. Рішення для менших квадратів матиме кращу оцінку з меншим бюджетом.

Нижче наведена програма є функціональною. Перевірте github на повний код (із використанням, коментарями тощо).

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct {
    int y, x, height, width, created, deleted;
} rectangle;
#define NOTYET -1
#define TOPEDGE 1
#define RIGHTEDGE 2
#define BOTTOMEDGE 4
#define LEFTEDGE 8
#define CENTER 16
#define nextEdge(e) (e<<=1)
#define min(x,y) (((x)<(y))?(x):(y))
#define max(x,y) (((x)>(y))?(x):(y))
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define MAXFACTORS 1000
#define EOL printf("\n")
#define isCurrent(r) (r.created != NOTYET && r.deleted == NOTYET)
#define deleteTxn(r,t) (r.deleted=t)
int area(rectangle r){
    return r.width*r.height;
}
void pop(rectangle *s){
    unsigned int k=0;
    while(s[k].width){
        k++;
    }
    s[k-1].width=s[k-1].height=0;
}
void rpush(rectangle *s, rectangle x){
    unsigned int k=0;
    while(s[k].width){
        k++;
    }
    x.deleted=NOTYET;
    s[k++]=x;
    s[k].width=s[k].height=0;

    return;
}
void dumprectangle(rectangle r){
    printf("%dX%d@[%d,%d] (%d,%d)\t",r.width, r.height, r.x, r.y, r.created, r.deleted);
}
void dumpstack(rectangle *s){
    unsigned int k=0;
    while(s[k].width){
        dumprectangle(s[k]);
        k++;
    }
}
rectangle initrectangle(int width, int height){
    rectangle r;
    r.x=r.y=0;
    r.width=width;
    r.height=height;
    r.created=0;
    r.deleted=NOTYET;
    return r;
}
void initstack(rectangle *s, int n){
    int i;
    for(i=0;i<n;i++){
        s[i].y=s[i].x=s[i].height=s[i].width=0;
    }
}
int bitcount(int x){
    int count=0;
    while(x){
        if(x&1){
            count++;
        }
        x>>=1;
    }
    return count;
}
int congruent(rectangle a, rectangle b){
    return min(a.height,a.width) == min(b.height,b.width) && max(a.height,a.width) == max(b.height,b.width);
}
void report(rectangle *s, int side){
    int i;
    unsigned int smallest,biggest,area=0;

    smallest=side*side;
    biggest=0;

    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            smallest=min(smallest,s[i].width*s[i].height);
            biggest=max(biggest,s[i].width*s[i].height);
        }
    }
    printf("{%d}\n",biggest-smallest);
    printf("{\nDimensions\tLocation\n");
    for(i=0;s[i].width;i++){
        printf("%dx%d\t\t[%d,%d]\n",
            s[i].width,         s[i].height,
            s[i].x,             s[i].y);
    }
    printf("}\n");
}
unsigned int sumstack(rectangle *s){
    unsigned int sum=0;
    int i;
    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            sum+=s[i].width*s[i].height;
            s++;
        }
    }
    return sum;
}
unsigned int minstack(rectangle *s){
    unsigned int area=400000;
    int i;

    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            area=min(area,s[i].width*s[i].height);
        }
    }
    return area;
}
void rollback(rectangle *r, int txn){
    int i;

    if(txn != NOTYET){
        for(i=0;r[i].width;i++){
            if(r[i].created == txn){
                r[i].created=r[i].deleted=NOTYET;
                r[i].x=r[i].width=r[i].y=r[i].height=0;
            }
            else if(r[i].deleted == txn){
                r[i].deleted=NOTYET;
            }
        }
    }
}
int overlap(rectangle a, rectangle b){
    if((a.x < b.x+b.width && a.x+a.width > b.x) && (b.y < a.y+a.height && b.y+b.height > a.y)){
        return TRUE;
    }
    return FALSE;
}
int stackoverlap(rectangle *callstack, rectangle next){
    int i,j;
    for(i=0;callstack[i].width;i++){
        if(overlap(callstack[i], next)){
            return TRUE;
        }
    }
    return FALSE;
}
rectangle rotate(rectangle a){
    int x=a.width;
    a.width=a.height;
    a.height=x;
    return a;
}
int buildedge(rectangle *stack, rectangle *callstack,int side, rectangle *space){
    int i,j,edge,goal,nextgoal,x,y,d,mindim,minarea,result=FALSE,spacetxn,stacktxn;
    mindim=side;
    minarea=side*side;
    for(i=0;stack[i].width;i++){
        mindim=min(mindim,min(stack[i].width,stack[i].height));
        minarea=min(minarea,area(stack[i]));
    }
    x=y=0;
    edge=TOPEDGE;
    i=0;
    while(edge == TOPEDGE && callstack[i].width != 0){
        if(callstack[i].x == x && callstack[i].y == y){
            x+=callstack[i].width;
            if(x == side){
                nextEdge(edge);
                y=0;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == RIGHTEDGE && callstack[i].width != 0){
        if(callstack[i].x+callstack[i].width == x && callstack[i].y == y){
            y+=callstack[i].height;
            if(y == side){
                nextEdge(edge);
                x=side;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == BOTTOMEDGE && callstack[i].width != 0){
        if(callstack[i].x+callstack[i].width == x && callstack[i].y+callstack[i].height == y){
            x-=callstack[i].width;
            if(x == 0){
                nextEdge(edge);
                y=side;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == LEFTEDGE && callstack[i].width != 0){
        if(callstack[i].x == x && callstack[i].y+callstack[i].height == y){
            y-=callstack[i].height;
            if(y == 0){
                nextEdge(edge);
            }
            i=0;
        }
        else {
            i++;
        }
    }
    if(edge == CENTER){
        /* rectangles are placed all along the perimeter of the square.
         * Now match will use a different strategy to match the remaining space
         * with what remains in stack */
        if(match(stack,callstack,space)){
            report(callstack,side);
            return TRUE;
        }
        return FALSE;
    }
    switch(edge){
    case TOPEDGE:
        goal=side-x;
        break;
    case RIGHTEDGE:
        goal=side-y;
        break;
    case BOTTOMEDGE:
        goal=x;
        break;
    case LEFTEDGE:
        /* Still a good assumption that callstack[0] is at 0,0 */
        goal=y-callstack[0].height;
        break;
    default:
        fprintf(stderr,"Error: buildedge has unexpected edge (b): %d\n",edge);
        exit(0);
    }
    nextgoal=goal-mindim;
    for(i=0;stack[i].width;i++){
        if(isCurrent(stack[i])){
            for(d=0;d<2;d++){
                switch(edge){
                case TOPEDGE:
                    if(stack[i].width == goal || stack[i].width <= nextgoal){
                        stack[i].x=x;
                        stack[i].y=y;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case RIGHTEDGE:
                    if(stack[i].height == goal || stack[i].height <= nextgoal){
                        stack[i].x=x-stack[i].width;
                        stack[i].y=y;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case BOTTOMEDGE:
                    if(stack[i].width == goal || stack[i].width <= nextgoal){
                        stack[i].x=x-stack[i].width;
                        stack[i].y=y-stack[i].height;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case LEFTEDGE:
                    if(stack[i].height == goal || stack[i].height <= nextgoal){
                        stack[i].x=x;
                        stack[i].y=y-stack[i].height;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                default:
                    fprintf(stderr,"Error: buildedge has unexpected edge (c): %d\n",edge);
                    exit(0);
                }
                if(callstack[0].width != 0 && stack[i].width != stack[i].height){
                    stack[i]=rotate(stack[i]);
                }
                else {
                    break;
                }
            }
        }
    }
    return FALSE;
}
int populatestack(rectangle *stack, int score, int side, int rectangles){
    int offset,negative,area,mindim;
    rectangle local;

    int avg_area=(side*side)/rectangles;

    if(avg_area < 4){
        /* It's getting too small - really */
        return FALSE;
    }
    local.x=0;
    local.y=0;
    local.created=0;
    local.deleted=NOTYET;

    initstack(stack,MAXFACTORS);
    for(offset=1;offset<=score;offset++){
        negative=offset&1;
        area=avg_area + (negative?(0-(offset>>1)):(offset>>1));
        mindim=area/side;

        if(side*(area/side) == area){
            local.width=side;
            local.height=area/side;
            rpush(stack,local);
        }

        if(area > 0){
            for(local.width=side-mindim;local.width>=area/local.width;local.width--){
                if(local.width*(area/local.width) == area){
                    local.height=area/local.width;
                    rpush(stack,local);
                }
            }
        }
    }
    return TRUE;
}
int solve(int side,int rectangles,int score){
    rectangle stack[MAXFACTORS],callstack[MAXFACTORS];
    rectangle space[MAXFACTORS];
    rectangle universe;

    if(!populatestack(stack, score, side, rectangles)){
        return FALSE;
    }
    if(sumstack(stack) >= side*side){
        initstack(callstack,MAXFACTORS);
        initstack(space,MAXFACTORS);

        /* Initialize space (not occupied by a rectangle) to be side by side
         * where side is the height/width of the square into which the rectangles fit. */
        universe.width=universe.height=side;
        universe.x=universe.y=0;
        universe.created=0;
        universe.deleted=NOTYET;
        rpush(space, universe);

        if(buildedge(stack,callstack,side,space)){
            return TRUE;
        }
    }
    return FALSE;
}
int containsPoint(rectangle a, int x, int y){
    return a.x <= x && a.y <= y && a.x+a.width > x && a.y+a.height > y;
}
int containsRectangle(rectangle a, rectangle b){
    return containsPoint(a, b.x, b.y) && containsPoint(a, b.x+b.width-1, b.y) && containsPoint(a, b.x, b.y+b.height-1) && containsPoint(a, b.x+b.width-1, b.y+b.height-1);
}
int areEqual(rectangle a, rectangle b){
    return a.x == b.x && a.y == b.y && a.width == b.width && a.height == b.height;
}
int nexttransaction(rectangle *r){
    int i,n=NOTYET;

    for(i=0;r[i].width;i++){
        n=max(n,max(r[i].created,r[i].deleted));
    }
    return n+1;
}
void splitrectanglevertically(rectangle *space, int i, int x, int txn){
    rectangle left, right;
    left=right=space[i];
    right.x=x;
    left.width=right.x-left.x;
    right.width-=left.width;
    left.created=right.created=space[i].deleted=txn;
    rpush(space,left);
    rpush(space,right);
}
void splitrectanglehorizontally(rectangle *space, int i, int y, int txn){
    rectangle top, bottom;
    top=bottom=space[i];
    bottom.y=y;
    top.height=bottom.y-top.y;
    bottom.height-=top.height;
    top.created=bottom.created=space[i].deleted=txn;
    rpush(space,top);
    rpush(space,bottom);
}
int smallest(rectangle *space){
    int i,j,smallest;
    rectangle current;
    smallest=0;
    for(i=0;space[i].width;i++){
        if(isCurrent(space[i])){
            current=space[i];
            for(j=0;space[j].width;j++){
                if(isCurrent(space[j]) && i != j){
                    if(current.x+current.width == space[j].x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.width+=space[j].width;
                    }
                    else if(space[j].x+space[j].width == current.x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.x=space[j].x;
                        current.width+=space[j].width;
                    }
                    else if(current.y+current.height == space[j].y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.height+=space[j].height;
                    }
                    else if(space[j].y+space[j].height == current.y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.y=space[j].y;
                        current.height+=space[j].height;
                    }
                }
            }
            if(smallest == 0){
                smallest=current.width * current.height;
            }
            else if(smallest > current.width * current.height){
                smallest=current.width * current.height;
            }
        }
    }
    return smallest;
}
int narrow(rectangle *space){
    int i,j;
    rectangle smallest,current;

    smallest.width=0;
    for(i=0;space[i].width;i++){
        current=space[i];
        if(isCurrent(current)){
            for(j=0;space[j].width;j++){
                if(isCurrent(space[j]) && i != j){
                    if(current.width <= current.height
                    && current.x+current.width == space[j].x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.width+=space[j].width;
                    }
                    else if(current.width <= current.height
                    && space[j].x+space[j].width == current.x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.x=space[j].x;
                        current.width+=space[j].width;
                    }

                    if(current.width >= current.height
                    && current.y+current.height == space[j].y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.height+=space[j].height;
                    }
                    else if(current.width >= current.height
                    && space[j].y+space[j].height == current.y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.y=space[j].y;
                        current.height+=space[j].height;
                    }
                }
            }
            if(smallest.width == 0){
                smallest=current;
            }
            else if(min(smallest.width,smallest.height) > min(current.width,current.height)){
                smallest=current;
            }
        }
    }
    return min(smallest.width,smallest.height);
}
int notEmpty(rectangle *space){
    int i,count;

    for(i=0,count=0;space[i].width;i++){
        if(isCurrent(space[i])){
            count++;
        }
    }
    return count;
}
int isAdjacent(rectangle r, rectangle s){
    if(r.y == s.y+s.height && r.x < s.x+s.width && s.x < r.x+r.width){
        return TOPEDGE;
    }
    if(s.x == r.x+r.width && r.y < s.y+s.height && s.y < r.y+r.height){
        return RIGHTEDGE;
    }
    if(s.y == r.y+r.height && r.x < s.x+s.width && s.x < r.x+r.width){
        return BOTTOMEDGE;
    }
    if(r.x == s.x+s.width && r.y < s.y+s.height && s.y < r.y+r.height){
        return LEFTEDGE;
    }
    return NOTYET;
}

int adjacentrectangle(rectangle *space, int k, int k0){
    int i,edge;
    for(i=k0+1;space[i].width;i++){
        if(i != k && isCurrent(space[i])){
            if(isAdjacent(space[k],space[i]) != NOTYET){
                return i;
            }
        }
    }
    return NOTYET;
}
int expanse(rectangle *space, int j, int d){ /* Returns how far space[j] can expand in the d direction */
    int extent,k,giveUp,distance;
    rectangle result=space[j];

    extent=0;
    giveUp=FALSE;
    distance=0;
    if(d == TOPEDGE || d == BOTTOMEDGE){
        while(extent < space[j].width && !giveUp){
            giveUp=TRUE;
            for(k=0;space[k].width;k++){
                if(k != j && isCurrent(space[k]) && isAdjacent(space[j],space[k]) == d){
                    if(space[j].x+extent == space[k].x){
                        extent+=space[k].width;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                    else if(space[j].x+extent > space[k].x && space[j].x+extent < space[k].x+space[k].width){
                        extent=space[k].x+space[k].width-space[j].x;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                }
            }
        }
        if(extent < space[j].width){
            return 0;
        }
        return space[j].height+distance;
    }
    else if(d == LEFTEDGE || d == RIGHTEDGE){
        while(extent < space[j].height && !giveUp){
            giveUp=TRUE;
            for(k=0;space[k].width;k++){
                if(k != j && isCurrent(space[k]) && isAdjacent(space[j],space[k]) == d){
                    if(space[j].y+extent == space[k].y){
                        extent+=space[k].height;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                    else if(space[j].y+extent > space[k].y && space[j].y+extent < space[k].y+space[k].height){
                        extent=space[k].y+space[k].height-space[j].y;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                }
            }
        }
        if(extent < space[j].height){
            return 0;
        }
        return space[j].width+distance;
    }
    return 0;
}
int match(rectangle *stack, rectangle *callstack, rectangle *space){
    int i,j,k,d,goal,mn;
    int height;
    int spacetxn, stacktxn, calltxn;
    int map;
    rectangle r;

    for(i=0,goal=0;space[i].width;i++){
        if(isCurrent(space[i])){
            goal+=space[i].width*space[i].height;
        }
    }
    if(goal == 0){
        return TRUE;
    }
    mn=minstack(stack);
    if(goal < mn){
        /* The goal (space available) is smaller than any rectangle left in the stack */
        return FALSE;
    }
    spacetxn=nexttransaction(space);
    stacktxn=nexttransaction(stack);
    calltxn=nexttransaction(callstack);
    for(j=0;space[j].width;j++){
        for(i=0;stack[i].width;i++){
            if(isCurrent(stack[i]) && isCurrent(space[j])){
                if(congruent(space[j], stack[i]) && adjacentrectangle(space,j,NOTYET) == NOTYET){
                    r=space[j];
                    r.created=calltxn;
                    rpush(callstack, r);
                    deleteTxn(stack[i],stacktxn);
                    deleteTxn(space[j],spacetxn);
                }
            }
        }
    }
    if(!notEmpty(space)){
        return TRUE;
    }
    rectangle e;
    for(j=0;space[j].width;j++){
        if(isCurrent(space[j])){
            e=space[j];
            for(k=0,map=0;space[k].width;k++){
                if(k != j && isCurrent(space[k])){
                    d=isAdjacent(space[j], space[k]);
                    if(d != NOTYET){
                        map|=d;
                    }
                }
            }
            if(bitcount(map) == 1){ /* space[j] has adjacent space on only one side */
                if(map == TOPEDGE || map == BOTTOMEDGE){
                    e.height=expanse(space,j,map);
                }
                else if(map == LEFTEDGE || map == RIGHTEDGE){
                    e.width=expanse(space,j,map);
                }
                for(i=0;stack[i].width;i++){
                    if(isCurrent(stack[i])){
                        if(congruent(e, stack[i])){
                            e.created=calltxn;
                            rpush(callstack, e);
                            deleteTxn(stack[i],stacktxn);
                            if(!removerectangle(space, e, spacetxn)){
                                printf("Logic error in match/expanse.  Terminating\n");
                                exit(0);
                            }
                            if(match(stack,callstack,space)){
                                return TRUE;
                            }
                            else {
                                rollback(stack,stacktxn);
                                rollback(callstack,calltxn);
                                rollback(space,spacetxn);
                                return FALSE;
                            }
                        }
                        else if(congruent(space[j], stack[i])){
                            r=space[j];
                            r.created=calltxn;
                            rpush(callstack, r);
                            deleteTxn(stack[i],stacktxn);
                            if(!removerectangle(space, r, spacetxn)){
                                printf("Logic error in match/expanse.  Terminating\n");
                                exit(0);
                            }
                            if(match(stack,callstack,space)){
                                return TRUE;
                            }
                            else {
                                rollback(stack,stacktxn);
                                rollback(callstack,calltxn);
                                rollback(space,spacetxn);
                                return FALSE;
                            }
                        }
                    }
                }
            }
        }
    }
    if(notEmpty(space)){
        rollback(stack,stacktxn);
        rollback(callstack,calltxn);
        rollback(space,spacetxn);
        return FALSE;
    }
    return TRUE;
}
int removerectangle(rectangle *space, rectangle r, int ntxn){
    int i,status=TRUE;
    for(i=0;space[i].width;i++){
        if(space[i].deleted == NOTYET){
            if(areEqual(space[i], r)){
                space[i].deleted=ntxn;
                return TRUE;
            }
            else if(containsRectangle(space[i], r)){
                if(r.x > space[i].x){
                    splitrectanglevertically(space, i, r.x, ntxn);
                }
                else if(r.y > space[i].y){
                    splitrectanglehorizontally(space, i, r.y, ntxn);
                }
                else if(r.x+r.width < space[i].x+space[i].width){
                    splitrectanglevertically(space, i, r.x+r.width, ntxn);
                }
                else if(r.y+r.height < space[i].y+space[i].height){
                    splitrectanglehorizontally(space, i, r.y+r.height, ntxn);
                }
            }
            else if(overlap(space[i], r)){  /* we have to split both */
                rectangle aux;
                if(r.x < space[i].x){
                    aux=r;
                    aux.width=space[i].x-r.x;
                    r.x+=aux.width;
                    r.width-=aux.width;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.x+r.width > space[i].x+space[i].width){
                    aux=r;
                    aux.x=space[i].x+space[i].width;
                    aux.width=r.x+r.width-aux.x;
                    r.width-=aux.width;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.y < space[i].y){
                    aux=r;
                    aux.height=space[i].y-aux.y;
                    r.y+=aux.height;
                    r.height-=aux.height;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.y+r.height > space[i].y+space[i].height){
                    aux=r;
                    aux.y=space[i].y+space[i].height;
                    aux.height=r.y+r.height-aux.y;
                    r.height-=aux.height;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(areEqual(space[i], r)){
                    space[i].deleted=ntxn;
                    return TRUE;
                }
                else {
                    if(!removerectangle(space,r,ntxn)){
                        return FALSE;
                    }
                    return TRUE;
                }
            }
        }
    }
    return TRUE;
}
int main(int argc, char *argv[]){
    int side=15;
    int n=5;
    int budget=0;
    int status;
    while((status=getopt(argc,argv,"l:n:")) >= 0){
        switch(status){
        case 'l':
            sscanf(optarg,"%d",&side);
            break;
        case 'n':
            sscanf(optarg,"%d",&n);
            break;
        }
    }
    budget=64;
    while(solve(side,n,budget) == FALSE){
        budget+=16;
    }
}
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.