Комбінаційний головоломка!


12

Вступ: Комбінаційна логіка

Комбінаційна логіка (CL) заснована на речах, званих комбінаторами , які в основному є функціями. Є два основні "вбудовані" комбінатори, Sі K, що буде пояснено пізніше.

Ліво-асоціативність

CL - ліво-асоціативний , що означає, що дужки (містять речі), які знаходяться в лівій частині ліворучної пари дужок, що містять його, можуть бути вилучені, при цьому його матеріал буде вивільнений. Наприклад, щось подібне:

((a b) c)

Можна зменшити до

(a b c)

Там, де (a b)знаходиться ліворуч від більшої дужки ((a b) c), його можна зняти.

Набагато більший приклад асоціації ліворуч (квадратні дужки - це пояснення):

  ((a b) c ((d e) f (((g h) i) j)))
= (a b c ((d e) f (((g h) i) j)))   [((a b) c...) = (a b c...)]
= (a b c (d e f (((g h) i) j)))     [((d e) f...) = (d e f...)]
= (a b c (d e f ((g h i) j)))       [((g h) i) = (g h i)]
= (a b c (d e f (g h i j)))         [((g h i) j) = (g h i j)]

Дужки також можна зменшити, коли більше однієї пари обертаються навколо одних і тих же предметів. Приклади:

((((a)))) -> a
a ((((b)))) -> a b
a (((b c))) -> a (b c) [(b c) is still a group, and therefore need brackets.
                        Note that this doesn't reduce to `a b c`, because
                        `(b c)` is not on the left.]

Вбудовані

У CL є два "вбудовані" комбінатори, Sі Kякі можуть перемикати об'єкти (поодинокі комбінатори або група комбінаторів / груп, обгорнутих у дужки) приблизно так:

K x y = x
S x y z = x z (y z)

Де x, yі zможе бути дублерів для чого - небудь.

Приклад Sі Kполягають в наступному:

  (S K K) x [x is a stand-in for anything]
= S K K x   [left-associativity]
= K x (K x) [S combinator]
= x         [K combinator]

Ще один приклад:

  S a b c d
= a c (b c) d [combinators only work on the n objects to the right of it,
               where n is the number of "arguments" n is defined to have -
               S takes 3 arguments, so it only works on 3 terms]

Вищенаведені приклади звичайних заяв CL, де твердження не можна додатково оцінювати і досягає кінцевого результату за певний час. Існують ненормовані твердження (це твердження CL, які не припиняються і будуть оцінюватися назавжди), але вони не входять до сфери завдання та не потребують їх висвітлення.

Якщо ви хочете дізнатися більше про CL, прочитайте цю сторінку Вікіпедії .

Завдання:

Ваше завдання - зробити додаткові комбінатори, враховуючи кількість аргументів, і що він оцінює як вхідний, який задається так:

{amount_of_args} = {evaluated}

Де {amount_of_args}натуральне число дорівнює кількості аргументів і {evaluated}складається з:

  • аргументи до суми аргументів, 1будучи першим аргументом, 2будучи другим, тощо.
    • Вам гарантовано, що номери аргументів, що перевищують кількість аргументів (тобто лише 4тоді, коли {amount_of_args}є 3), не з'являться у {evaluated}.
  • дужки ()

Отже, приклади входів:

3 = 2 3 1
4 = 1 (2 (3 4))

Перший вхід запитує комбінатор (скажімо, R) з трьома аргументами ( R 1 2 3), який потім оцінює:

R 1 2 3 -> 2 3 1

Другий вхід запитує про це (з назвою комбінатора A):

A 1 2 3 4 -> 1 (2 (3 4))

З урахуванням введення в цьому форматі, ви повинні повернути рядок S, Kі (), що при підстановці з ім'ям комбінатора і працювати з аргументами, повертає той же оцінене заяву в якості {evaluated}блоку , коли командний блок заміщено тому для цього імені комбінатора.

У вихідному операторі комбінатора може бути видалено пробіл і видалені зовнішні дужки, тому щось подібне (S K K (S S))можна перетворити SKK(SS).

Якщо ви хочете , щоб перевірити виходи вашої програми, @aditsu зробив комбінаторної логіки аналізатор (який включає в себе S, K, Iі навіть ті , і інші люблять Bі C) тут .

Оцінка:

Оскільки це , метою цього виклику є досягнення найменшої кількості байтів на виході з урахуванням цих 50 тестів . Будь ласка, поставте у відповідь свої результати для 50 тестових випадків або зробіть пастину (чи щось подібне) та опублікуйте посилання на цю пастину.

У разі вирівнювання виграє найдавніше рішення.

Правила:

  • Ваша відповідь повинна повернути правильний вихід - тому, задавши вхід, він повинен повернути правильний вихід відповідно до визначення в задачі.
  • Ваша відповідь повинна вийти протягом години на сучасному ноутбуці для кожного тестового випадку.
  • Будь-яке жорстке кодування рішень заборонено. Однак вам дозволяється жорстко кодувати до 10 комбінаторів.
  • Ваша програма повинна повертати те саме рішення кожного разу за один і той же вхід.
  • Ваша програма повинна повернути дійсний результат для будь-яких даних, а не лише тестових випадків.

Як ви можете переконатися, що люди не крадуть комбінаторів, знайдених в інших відповідях?
Фаталізувати

@Fatalize Це не повинно мати великого значення, оскільки люди можуть брати натхнення у відповідей інших людей і базуватись на тому, щоб створювати кращі відповіді.
clismique

Говорячи про натхнення, я помічаю, що коли бажаний результат не містить а 1, ви можете відняти 1з усього, а потім обернути рішення для цієї відповіді K(). Приклад: Рішення для 2 -> 1є K, тому рішення для 3 -> 2є KK, рішення 4 -> 3є K(KK)і т.д.
Ніл

Відповіді:


8

Haskell , оцінка 5017

Це поєднує найдрібніший можливий алгоритм усунення абстракції ((λ x . X ) = I; (λ x . Y ) = K y ; (λ x . M N ) = S (λ x . M ) (λ x . N ) ) з оптимізатором для вичинок, що використовується після кожного застосування. Найважливіше правило оптимізації - S (K x ) (K y ) ↦ K ( xy ), яке не дозволяє алгоритму завжди вибухати експоненціально.

Набір правил налаштовано як перелік пар рядків, тому легко пограти з новими правилами. Як особливий бонус від повторного використання вхідного аналізатора для цієї мети, S, K і I також приймаються у межах вхідних комбінаторів.

Правила не застосовуються беззастережно; скоріше, зберігаються і старі, і нові версії, а субоптимальні версії обрізаються лише тоді, коли їх довжина перевищує довжину найкращої версії більш ніж на якусь константу (зараз 3 байти).

Оцінка трохи покращується, якщо я ставився до мене як до основного комбінатора, поки вихідний етап не перепише його на SKK. Таким чином KI = K (SKK) можна скоротити на 4 байти до SK на виході, не плутаючи решту оптимізацій.

{-# LANGUAGE ViewPatterns #-}

import qualified Data.IntMap as I
import qualified Data.List.NonEmpty as N
import System.IO

data Term
  = V Int
  | S
  | K
  | I
  | A (N.NonEmpty (Int, Term, Term))
  deriving (Show, Eq, Ord)

parse :: String -> (Term, String)
parse = parseApp . parse1

parseApp :: (Term, String) -> (Term, String)
parseApp (t, ' ':s) = parseApp (t, s)
parseApp (t, "") = (t, "")
parseApp (t, ')':s) = (t, ')' : s)
parseApp (t1, parse1 -> (t2, s)) =
  parseApp (A (pure (appLen (t1, t2), t1, t2)), s)

parse1 :: String -> (Term, String)
parse1 (' ':s) = parse1 s
parse1 ('(':(parse -> (t, ')':s))) = (t, s)
parse1 ('S':s) = (S, s)
parse1 ('K':s) = (K, s)
parse1 ('I':s) = (I, s)
parse1 (lex -> [(i, s)]) = (V (read i), s)

ruleStrings :: [(String, String)]
ruleStrings =
  [ ("1 3(2 3)", "S1 2 3")
  , ("S(K(S(K1)))(S(K(S(K2)))3)", "S(K(S(K(S(K1)2))))3")
  , ("S(K(S(K1)))(S(K2))", "S(K(S(K1)2))")
  , ("S(K1)(K2)", "K(1 2)")
  , ("S(K1)I", "1")
  , ("S(S(K1)2)(K3)", "S(K(S1(K3)))2")
  , ("S(SI1)I", "S(SSK)1")
  ]

rules :: [(Term, Term)]
rules = [(a, b) | (parse -> (a, ""), parse -> (b, "")) <- ruleStrings]

len :: Term -> Int
len (V _) = 1
len S = 1
len K = 1
len I = 3
len (A ((l, _, _) N.:| _)) = l

appLen :: (Term, Term) -> Int
appLen (t1, S) = len t1 + 1
appLen (t1, K) = len t1 + 1
appLen (K, I) = 2
appLen (t1, t2) = len t1 + len t2 + 2

notA :: Term -> Bool
notA (A _) = False
notA _ = True

alt :: N.NonEmpty Term -> Term
alt ts =
  head $
  N.filter notA ts ++
  [A (N.nub (a N.:| filter (\(l, _, _) -> l <= minLen + 3) aa))]
  where
    a@(minLen, _, _) N.:| aa =
      N.sort $ do
        A b <- ts
        b

match :: Term -> Term -> I.IntMap Term -> [I.IntMap Term]
match (V i) t m =
  case I.lookup i m of
    Just ((/= t) -> True) -> []
    _ -> [I.insert i t m]
match S S m = [m]
match K K m = [m]
match I I m = [m]
match (A a) (A a') m = do
  (_, t1, t2) <- N.toList a
  (_, t1', t2') <- N.toList a'
  m1 <- match t1 t1' m
  match t2 t2' m1
match _ _ _ = []

sub :: I.IntMap Term -> Term -> Term
sub _ S = S
sub _ K = K
sub _ I = I
sub m (V i) = m I.! i
sub m (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (sub m t1 & sub m t2)

optimize :: Term -> Term
optimize t = alt $ t N.:| [sub m b | (a, b) <- rules, m <- match a t I.empty]

infixl 5 &

(&) :: Term -> Term -> Term
t1 & t2 = optimize (A (pure (appLen (t1, t2), t1, t2)))

elim :: Int -> Term -> Term
elim n (V ((== n) -> True)) = I
elim n (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (S & elim n t1 & elim n t2)
elim _ t = K & t

paren :: String -> Bool -> String
paren s True = "(" ++ s ++ ")"
paren s False = s

output :: Term -> Bool -> String
output S = const "S"
output K = const "K"
output I = paren "SKK"
output (V i) = \_ -> show i ++ " "
output (A ((_, K, I) N.:| _)) = paren "SK"
output (A ((_, t1, t2) N.:| _)) = paren (output t1 False ++ output t2 True)

convert :: Int -> Term -> Term
convert 0 t = t
convert n t = convert (n - 1) (elim n t)

process :: String -> String
process (lex -> [(n, lex -> [((`elem` ["=", "->"]) -> True, parse -> (t, ""))])]) =
  output (convert (read n) t) False

main :: IO ()
main = do
  line <- getLine
  putStrLn (process line)
  hFlush stdout
  main

Спробуйте в Інтернеті!

Вихідні дані

  1. S (KS) K
  2. S (K (SS (KK))) (S (KK) S)
  3. S (K (SS)) (S (KK) K)
  4. S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (SKK)))) K)))
  5. S (K (S (K (SS (SK))))) (S (K (SS (SK)))) (S (SKK) (SKK)))
  6. КК
  7. S (K (S (S (KS) (S (K (S (SKK))))) K)))) (S (KK) K)
  8. S (K (SS (K (S (KK) (S (SKK) (SKK))))))) (S (SSK (KS)) (S (S (KS) (S (KK) (S (KS)) K))) (K (S (K (S (SSK)))) K))))
  9. S (K (S (KK))) (S (K (S (S (SKK) (SKK))))) K)
  10. СК
  11. S (KS) (S (KK) (S (K (SS)) (S (KK) K)))
  12. S (K (SS (K (S (KK) K))))) (S (KK) (S (KS) (S (SSK (KS)) (S (K (SS)) (S (KK) K) ))))
  13. S (K (S (K (S (K (SS (KK))) ")" (S (KK) S))))) (S (K (SS (KK)))) (S (KK) (S (KS) (S (K (S (SKK)))) K))))
  14. S (K (S (K (S (K (SS (KK))) ")" (S (KK) S))))) (S (K (S (SKK)))) K)
  15. S (K (S (K (S (KS) K)))) (S (KS) K)
  16. S (K (S (KS) K))
  17. S (K (S (K (S (K (SS (K (S (S (KS)) (SKK) (SSK)))))) (K (S (SKK) (SKK)))))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (SSK))))) (S (KK) (S (KS) (S (KK) (SSK)))) )
  18. SSS (KK)
  19. КК
  20. S (KK) (S (KK) (S (S (KS) K) (S (K (S (SKK))) (S (K (S (SKK)))) K))))
  21. S (S (KS) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (K (S (K (S ( S (KS) (S (K (S (SKK))) K)))) (S (KK) K)))
  22. S (KK)
  23. S (KS) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))
  24. S (K (S (K (S (KS) K)))) (S (K (S (S (KS) (S) KS) (S (KK) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  25. S (KS) (S (KK) (S (KS) K))
  26. S (S (KS) (S (KK) (S (KS) (S (KK) (S (K (S (K (SS (KK)))))))) (S (KS) (S (KK) (S (SSK (KS)) (S (KS) (S (SKK) (SKK))))))))))) (K (S (S (KS) (S (K (S (K (S (KS (KS) ) (S (K (S (KS) (S (K (S (SKK)))) K)))))))) (S (K (S (SKK)))) K))) (S (K ( S (K (S (KK) K)))) (S (K (S (SKK)))) K))))
  27. S (K (S (K (S (K (SS (K (S (K (S (S (KS)) (КС))))) K)))) (S (KK) K)) ))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS)))) (S (KK) K))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  28. K (S (KK))
  29. S (K (S (K (S (K (S (K (S (KS) K)))) ")")) (S (K (S (S (KS)) (S (KK) (S (K (SS))) ( S (KK) K)))))) K))))) (S (K (S (S (KS) (S (KK)) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  30. S (KK) (S (K (SSS (KK))))
  31. K (SSS (KK))
  32. S (K (SS (K (S (S (KS)) (S (KK) (S (KS) K)))) (K (S (K (S (SKK)))) K)))))) (S (KK) (S (KS) (SS (S (S (KS) (S (KK) (S (KS) (S (K (S (KS) (S (KK) (S (KS) K))) )))))) (KK))))
  33. S (K (S (K (S (K (S (K (SS (KK)))) ")") (S (KK) S)))))) (S (K (SS (K (S (KK) K)) ))) (S (KK) (SSS (KS))))
  34. S (K (S (K (S (KK) K))))
  35. S (K (S (K (S (K (S (K (SS (K (S (K (S (SKK))))) ")") K)))) (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (K (S (SKK)))))))) K)))) (S (KK) (S (K (SS)) (S (KK) K))))))) )))))) (S (K (S (S (KS) (S (K (S (SKK)))) K)))) (S (KK) K))
  36. S (K (SS (K (S (K (SS (K (S (K (S (SKK))))) ")") K)))) (S (KK) (S (KS) (SS (S (S (KS)) (S (KK) (S (KS) (S (K (S (SKK)))) K))))) (KK)))))))) (S (KK) (S (KS) (S ( KK) (S (K (S (K (S (K (S (K (S (K (SS (KK)))) "") (S (KK) S))))))))) (S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (KS) (S (KK) (S (KS) K)))))))))))))
  37. S (KK) (S (K (S (K (S (KK) (S (KK) K)))))) (SS (SK)))
  38. K (S (K (SSS (KK))))
  39. S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS) (K (S (K (S (S (KS)) (S (KS)) ))) К)))) (S (KK) K))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS (K (SS) )) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)))) KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)))) (S (KK) K)) ))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  40. S (K (S (KK))) (S (KS) (S (KK) (S (K (S (KK) (S (KK) K))))))
  41. S (K (SS (K (S (S (KS)) (S (KK) (S (KS) K)))) (K (S (K (S (SKK)))) K)))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (K (SS (K (S (K (SS)))) ")") ") (S (KK) K)))") (KK) (S (KS) K)))))) (S (K (SS (K (S (KK)) (S (K (SS)) K))))) (S (KK) (S ( K (SS)) (S (KK) (S (K (S (K (S (KK) (S (KS) K))))) (S (KS) K))))))))))
  42. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S) (K (SS) (K (SS) (K (S (K (S (KS))) (S (K (S (SKK))) K)))) (S (KK) K))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))))) (S (K (SS (K (S ( K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS))) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)))) (S (KK)) К))))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  43. K (K (K (K (S (KK) (S (KK) (S (K (SS (SK))) (SSK))))))))
  44. S (KK) (S (K (S (KK) (S (KK) (S (KK) (S (KK) K))))))
  45. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S) (K (S (K (S (K (SS (K (S (K (S K (S (S (KS) (S (K (S (SKK)))) K)))) (S (KK) K)))) (S (KK) (S (KS) K)))) )) (S (K (SS (K (S (K (SS)))) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S ( K (SS (K (S (K (SS))) (S (KK) K))))) (S (KK) (S (KS) K)))))))) (S (K (SS (K) (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K ( SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)))) (KK) K))))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  46. S (K (S (K (S (K (S (K (S (K (SS (K (S (K (SS (K (S (K (SS) (KK)))) ")") ")") (S (KK) (S ( KS) (S (K (S (SKK))) K))))))) (S (KK) (S (KS) (S (KK) (S (SSK (KS)) (S (K (SS) )) (S (KK) K)))))))))) (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (KK)) ) (S (KK) (S (K (SS (K (S (KK) (S (KS) K)))))) (S (KK) (S (K (SS)) (S (KK) (S (K (SS (K (S (KK) K)))) (S (KK) S))))))))))) (S (KK) (S (K (SS)) K)) )))))))) (S (K (SS (K (S (KK)) (S (K (S (S (KS) (S (K)) (S (K (SS))) (S (KK) К)))))) (S (KK) (S (K (SS)) (S (KK) K))))))) (S (KK) S)))))) (S (K (SS (K (S (K (S (S (KS)) (S (KK)) (S (K (SS)) (S (KK) K))))))) (S (KK) (S (K ( SS)) (S (KK) K))))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (KS) (SK)) (S (KK)) ( S (KS) K)))))) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))))))
  47. S (K (SS (K (SS (S (S (KS) (S) (KK))))) () (KK))))) (S (KK) (S (KS) (S (K (S (K) (S (KS) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (K (SS (K (S (K (S (S (KS)) "") KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K (SS)) (S (KK) K))))))) (S (KK) (S (KS) K)))))))))))))) (S (K (S (S (KS) (S (KK)) (S (K (SS))) (S ( KK) (S (K (S (K (S (KS) K))))) (S (K (SS (K (S (K (SS))))) (S (KK) K)))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))))))))) (S (KK) (S (K (S (K (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (KK) (S (KK) K))))))) (S (KK) (S (K (SS)) K))))))))) (S (KS) (S (KK) (S (K (SS (K (S (KK) K)))))) (S (KK) (S ( KS) (S (SSK (KS)) (S (K (SS (KK)))) (S (KK) (S (KS) (S (K (S (SKK))) K))))))) )))))))))
  48. K (S (K (S (KK) (S (K (S (KK) (S (K (S (KK) (S (KK) K))))))))))))
  49. S (KK) (S (K (S (K (S (KK)) (S (K (S (K (S (KK)) (S (K (S (K (S (KK)) (S (K (S ( K (S (KK) (S (K (S (KK))) (S (K (S (SKK))) K)))))) (S (K (S (SKK)))) K))) ))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) К))
  50. S (K (S (K (S (K (S (K (S (K (S (KK)))) ")") (S (K (SS (K (S (K (S (S (KS)) (КС)) (K)) S (SKK))) K)))) (S (KK) K))))) (S (KK) (S (KS) K)))))))) (S (K (SS (K (S) (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) ) (S (KK) K))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (KK)) (S (KK) (S (KK)) (S (KK) K))))))) (S (K (SS)) (S (KK) K)))))))

Чи можна було б зробити вирази автоматичною оптимізацією (наприклад S (K x) (K y) = K (x y))?
CalculatorFeline

@CalculatorFeline Я не розумію вашого запитання; S (К й ) (К у ) буде автоматично оптимізований для K ( х ).
Anders Kaseorg

Зачекайте, чи представлені ці вирази як частково застосовані функції чи щось інше? Якщо частково застосовані функції, то, можливо, ви могли б зробити щось на кшталт мого останнього коментаря.
CalculatorFeline

@CalculatorFeline Представлення виглядає так, наприклад, 3 = 1 (2 3) ↦ 2 = S (K1) (S (K2) I) ↦ 2 = S (K1) 2 ↦ 1 = S (S (KS) (S (KK) (K1))) I ↦ 1 = S (S (KS) (K (K1))) I ↦ 1 = S (K (S (K1))) I ↦ 1 = S (K (S (K1) ))) I ↦ 1 = S (K1) ↦ S (KS) (S (KK) I) ↦ S (KS) K. Як бачимо, ми вже багато разів використовували правило S (K x ) (K y ) ↦ K ( xy ), поряд з іншими, про які я перераховував ruleStrings. Якби не ми, вихід був би експоненціально довшим: для цього крихітного прикладу ми отримали S (S (KS) (S (S (KS) (S (KK) (KS)))) (S (S (KS) (S (KK) (KK))) (S (KK) (SKK))))) (S (S (KS) (S (S (KS) (S (KK) (KS)))) ( S (S (KS) (S (KK) (KK))) (SK)))) (S (KK) (SK))) замість S (KS) K.
Anders Kaseorg

5

Сума довжин розчину: 12945 8508 5872

Код Haskell, який приймає рядки введення від stdin і не хвилює, роздільник =чи ->:

data E=S|K|V Int|A E E deriving Eq

instance Show E where
  showsPrec _ S = showChar 'S'
  showsPrec _ K = showChar 'K'
  showsPrec _ (V i) = shows i
  showsPrec p (A e f) = showParen (p>0) $ showsPrec 0 e . showsPrec 1 f

type SRead a = String -> (a,String) -- a simpler variation of ReadS

parse :: String -> E
parse s = let (e,"")=parseList (s++")") in e
parseList :: SRead E
parseList s = let (l,s')=parseL s in (foldl1 A l,s')
parseL :: SRead [E]
parseL (c:s) | c==' ' = parseL s
             | c==')' = ([],s)
parseL s = let (p,s')=parseExp s; (l,s'')=parseL s' in (p:l,s'')
parseExp :: SRead E
parseExp ('(':s) = parseList s
parseExp s = let [(n,s')]=reads s in (V n,s')

k e = A K e
s e f = A (A S e) f
i = s K K
s3 e f g = A (s e f) g
sk = A S K
ssk e f = A (s3 S K e) f

n `invars` (A e f) = n `invars` e || n `invars` f
n `invars` (V m)   = n==m
_ `invars` _       = False

comb (A e f) = comb e && comb f
comb (V _)   = False
comb _       = True

abstract _ (A (A S K) _) = sk
abstract n e | not (n `invars` e) = k e
abstract n (A e (V _)) | not (n `invars` e) = e
abstract n (A (A (V i) e) (V j)) | n==i && n==j =
                                   abstract n (ssk (V i) e)
abstract n (A e (A f g)) | comb e && comb f =
                                   abstract n (s3 (abstract n e) f g)
abstract n (A (A e f) g) | comb e && comb g =
                                   abstract n (s3 e (abstract n g) f)
abstract n (A (A e f) (A g h)) | comb e && comb g && f==h =
                                   abstract n (s3 e g f)
abstract n (A e f) = s (abstract n e) (abstract n f)
abstract n _ = i

abstractAll 0 e = e
abstractAll n e = abstractAll (n-1) $ abstract n e

parseLine :: String -> (Int,E)
parseLine s = let [(n,s')] = reads s
                  s''=dropWhile(`elem` " =->") s'
              in (n, parse s'')

solveLine :: String -> E
solveLine s = let (n,e) = parseLine s in abstractAll n e

main = interact $ unlines . map (show . solveLine) . lines

Він реалізує вдосконалену абстракцію дужок із розділу 3.2 Джона Тромпа: Двійкове обчислення лямбда та комбінаторну логіку, з яким пов'язано стаття Вікіпедії про комбінаторну логіку. Найбільш корисні спеціальні випадки використовують Sкомбінатор лише для підкреслення підрозділів, щоб уникнути глибокого введення змінних. Випадок, який перевіряє рівність деяких підтермін, не потрібен для жодного з тестових випадків. Хоча для обробки Wкомбінатора немає спеціального випадку (див. Відповідь Петра), правила працюють разом, щоб знайти коротший SS(SK)вираз. (Я спершу помилився, намагаючись оптимізувати внутрішні дзвінки abstract, потім цієї Wоптимізації не відбулося, і загальний результат був на 16 байт довше.)

Ось результати тестових випадків:

S(KS)K
S(K(S(K(SS(KK)))K))S
S(K(S(K(SS))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(K(S(S(K(S(KS)(S(SKK))))K)))K))K
S(K(S(K(SS(K(S(KK)(S(SKK)(SKK))))))(S(KS))))(S(K(S(K(S(K(SS(K(S(K(S(SSK)))K))))K))S))K)
S(K(S(K(S(KK)))(S(S(SKK)(SKK)))))K
SK
S(K(S(K(S(K(S(S(KS)(S(KS)))))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS))))(SS)))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(KS)K))))K))S))K))S))K
S(K(S(KS)K))
S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(SS(K(S(S(KS)(S(K(SS(K(S(SKK)(SKK)))))K))K))))K))S))K))(S(KK)K)))))K))S))K))S))K))(S(K(S(KK)K))K)
S(KK)(S(KK))
KK
S(K(S(KK)K))(S(S(KS)K)(S(K(S(K(S(SKK)))(S(SKK))))K))
S(K(S(K(S(K(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K)))K))K))K
S(KK)
S(K(S(K(S(K(S(K(S(S(KS)(S(K(S(KS)(S(KS))))))))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K
S(K(S(K(S(KS)K))S))K
S(K(S(K(S(K(S(K(SS(KK)))(S(KS))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K))))))))(S(SKK))))K)(S(K(S(K(S(K(S(KK)K))))(S(SKK))))K)))))K))S))K))S))K))S))(S(SKK)(SKK)))
S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K)))K))K))K))K
K(S(KK))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K)
S(KK)(S(K(S(KK)(S(KK)))))
K(S(KK)(S(KK)))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K)))
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))
S(K(S(K(S(KK)K))))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K)))))(S(SKK))))K)))K))K))K))))))(S(S(K(S(KS)(S(SKK))))K))))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)))(S(SKK))))K))))K))S))K))S))(S(SKK))))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K))))
S(K(S(KK)(S(K(S(K(S(KK)K))K)))))(SS(SK))
K(S(K(S(KK)(S(KK)))))
S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K)))K))K))K))K))K))K
S(K(S(K(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))K))))K))))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))K))S))K))S))K))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K)))K))K))K))K))K))K))K
K(K(K(K(K(S(K(S(KK)K))(S(K(SS(SK)))(SSK)))))))
S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))))))(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)))))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))K))K))K))K))K))K))))K))S))(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(KK)K))K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(KK)K))))))))(S(K(S(K(SS(KK)))K))S)))))K))S))K))S))K))S))K))S))(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K))
K(S(K(S(KK)(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))))
S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(KK))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K

3

8486, використовуючи S, K, I, W

Пояснення

Стандартний алгоритм (як описано , наприклад , в главі 18 знущатися пересмішника ) використовує чотири випадки, відповідний комбінатор S, K, I = SKK, і простий ліво-асоціацію. Я думаю, що саме це реалізує відповідь Крістіана. Це достатньо, але не обов'язково оптимально, і оскільки нам дозволено жорстко кодувати до 10 комбінаторів, це залишає 7 варіантів.

Інші відомі комбінатори комбінаторів є

B x y z = x (y z)
C x y z = x z y
W x y = x y y

які, разом з K, зробити повну основу . У СК це такі

B = S (K S) K
C = S (S (K (S (K S) K)) S) (K K)
W = S S (S K)

і SKIправила виводять ті самі вирази для Bі C, але для Wних походять S S (K (S K K)). Тому я вирішив застосувати Wяк особливий випадок.

Програма (CJam)

e# A tests whether argument is an array
{W=!!}:A;

e# F "flattens" an expression by removing unnecessary parentheses, although if the expression is a primitive
e# it actually wraps it in an array
{
  e# A primitive is already flat, so we only need to process arrays
  _A{
    ee{
      ~
      e# Stack: ... index elt
      e# First recurse to see how far that simplifies the element
      F
      e# If it's an array...
      _A{
        e# ... we can drop a level of nesting if either it's the first one (since combinator application
        e# is left-associative) or if it's a one-element array
        _,1=@!|{
          e# The tricky bit is that it might be a string, so we can't just use ~
          {}/
        }*
      }{
        \;
      }?
    }%
  }{a}?
}:F;


qN%{

e# Parse line of input
"->=()"" [[[]"er']+~
e# Eliminate the appropriate variables in reverse order. E eliminates the variable currently stored in V.
\,:)W%{
  e# Flatten current expression
  F

  e# Identify cases; X holds the eXpression and is guaranteed to be non-primitive
  :X
  [
    XVa=                  e# [V]
    Xe_V&!                e# case V-free expression
    X)_A0{V=}?\e_V&!*     e# case array with exactly one V, which is the last element
    X_e_Ve=~)>[VV]=X,2>*  e# case array with exactly two Vs, which are the last two elements
  ]
  1#
  e# Corresponding combinators
  [
    {;"SKK"}              e# I
    {['K\]}               e# K
    {);}                  e# X (less that final V)
    {););['S 'S "SK"]\a+} e# W special-cased as SS(SK) because the general-case algorithm derives SS(K(SKK))
    {['S\)E\E\]}          e# S (catch-all case)
  ]=~
}:EfV

e# Format for output
F
{
  _A{
    '(\{P}%')
  }*
}:P%

oNo}/

Інтернет-тестовий набір

Згенеровані виходи:

S(KS)K
S(S(KS)(S(KK)S))(KK)
S(K(SS))(S(KK)K)
S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK)
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)
S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(K(S(SKK)))K))(K(SKK)))))))(K(S(KK)(S(SKK)(SKK))))
S(K(S(KK)))(S(K(S(S(SKK)(SKK))))K)
K(SKK)
S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(SS))(S(KK)K))))))(K(S(KK)K))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(K(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(SKK)))K)))))(K(KK))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(KS)K))
S(K(S(KS)))(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(S(KS)K)(K(S(SKK)(SKK)))))K)))))(S(KK)K)))))))(S(KK)(S(KK)K))
S(KK)(S(KK))
KK
S(KK)(S(KK)(S(S(KS)K)(S(K(S(SKK)))(S(K(S(SKK)))K))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))
S(KK)
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KS))))))))(S(KK)(S(KK)(S(KK)K)))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K)))
S(KS)(S(KK)(S(KS)K))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(SKK)(SKK)))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(SKK)))K))))))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))(K(K(KK)))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K)))
K(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K))))))))))(K(K(S(KK)(S(KK)K))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))))
K(S(KK)(S(KK)))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KS)))))(K(S(KK)K))))))))(K(K(KK)))
S(K(S(K(S(KK)))))(S(K(S(KK))))
S(K(S(K(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K)))))))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))))(K(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))(K(K(K(K(KK)))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(SS(SK)))))
K(S(K(S(KK)))(S(K(S(KK)))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))
S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(KS)K))))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(S(KS)(S(KK)(S(KS)K)))))))(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))))))))(K(K(S(KK)(S(KK)K))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))
K(K(K(K(K(S(KK)(S(KK)(S(S(KS)(SSK))(K(SKK)))))))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(KK))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(S(KK)(S(KK)K))))))))(K(K(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(K(K(K(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)K))))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))))))))(K(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(S(KS)(S(KK)S))(KK))))))))))))))(K(K(K(K(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(K(S(KK)(S(KK)K))))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))))))(K(K(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))))
K(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(KK))))))))))
S(KK)(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S(KK)))))))))))(S(K(S(K(S(K(S(K(S(K(S(SKK)))))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(SKK)))))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))
S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.