Найшвидший головний генератор


23

Що таке домашній прем'єр?

Для прикладу візьмемо HP (4). Спочатку знайдіть прості фактори. Прості коефіцієнти 4 ( у числовому порядку від найменшого до найбільшого завжди ) - 2, 2. Візьміть ці фактори як буквальне число. 2, 2 стає 22. Цей процес факторингу триває, поки ви не досягнете простого числа.

number    prime factors
4         2, 2
22        2, 11
211       211 is prime

Після досягнення простого числа послідовність завершується. HP (4) = 211. Ось довший приклад із 14:

number    prime factors
14        2, 7
27        3, 3, 3
333       3, 3, 37
3337      47, 71
4771      13, 367
13367     13367 is prime

Ваше завдання полягає в тому, щоб створити програму, яка обчислить HP (x) за даними x, і зробити це якомога швидше . Ви можете використовувати будь-які ресурси, крім списку відомих домашніх праймерів.

Зверніть увагу, ці цифри дуже швидко стають дуже великими. При х = 8 HP (x) стрибає аж до 3331113965338635107. HP (49) ще не знайдено.

Швидкість програми буде перевірена на Raspberry Pi 2, усереднюючи наступні входи:

16
20
64
65
80

Якщо у вас є Raspberry Pi 2, час програмуйте самостійно, то середнє значення часу.


3
Визначтеся якомога швидше .
LegionMammal978

1
@ LegionMammal978 З найкращими робочими характеристиками. Це найшвидший виклик коду.
Ной L


1
Як ми можемо дізнатися, який код швидше? Деякі люди можуть пройти тестування на п'ятирічному ноутбуці ( кашель, як я, кашель ), а інші можуть використовувати високий клас робочого столу / сервера. Також продуктивність залежить від перекладачів однієї мови.
JungHwan Min

1
Чи дозволено використання імовірнісного тесту на первинність, такого як Міллер-Рабін?
милі

Відповіді:


6

Mathematica, HP (80) за ~ 0,88s

NestWhile[
  FromDigits[
    Flatten[IntegerDigits /@ 
      ConstantArray @@@ FactorInteger[#]]] &, #, CompositeQ] &

Анонімна функція. Бере число як вхід і повертає число як вихід.


1В кінці не повинно бути ...
JungHwan Min

У мене немає математики на комп’ютері, це означає, що мені доведеться перевірити це (та решту програм) на моєму Raspberry Pi 2.
Ной L

Оскільки ми не займаємось гольфом: є CompositeQдля !PrimeQ(що також гарантує, що ваша відповідь не втрачає уваги назавжди 1).
Мартін Ендер

Як можливо, що Mathematica виконує HP(80)за такий короткий час, не маючи десь жорсткі коди? Моєму ноутбуку i7 потрібні години, щоб виконати перевірку первинності, а також знайти основні фактори, HP(80)коли він приходить 47109211289720051.
Маріо

@NoahL Mathematica можна перевірити онлайн. meta.codegolf.stackexchange.com/a/1445/34718
mbomb007

5

PyPy 5.4.1 64bit (linux), HP (80) ~ 1.54s

32-бітна версія буде трохи повільніше.

Я використовую чотири різні методи факторизації з емпірично визначеними точками перерви:

Я деякий час намагався знайти перерву між ECF та MPQS, але, здається, такого немає. Однак якщо n містить малий коефіцієнт, ECF, як правило, знайде його майже відразу, тому я вирішив протестувати лише кілька кривих, перш ніж перейти до MPQS.

Наразі це лише ~ 2 рази повільніше, ніж Mathmatica, що я, безумовно, вважаю успіхом.


home-prime.py

import math
import my_math
import mpqs

max_trial = 1e10
max_pollard = 1e22

def factor(n):
  if n < max_trial:
    return factor_trial(n)
  for p in my_math.small_primes:
    if n%p == 0:
      return [p] + factor(n/p)
  if my_math.is_prime(n):
    return [n]
  if n < max_pollard:
    p = pollard_rho(n)
  else:
    p = lenstra_ecf(n) or mpqs.mpqs(n)
  return factor(p) + factor(n/p)


def factor_trial(n):
  a = []
  for p in my_math.small_primes:
    while n%p == 0:
      a += [p]
      n /= p
  i = 211
  while i*i < n:
    for o in my_math.offsets:
      i += o
      while n%i == 0:
        a += [i]
        n /= i
  if n > 1:
    a += [n]
  return a


def pollard_rho(n):
  # Brent's variant
  y, r, q = 0, 1, 1
  c, m = 9, 40
  g = 1
  while g == 1:
    x = y
    for i in range(r):
      y = (y*y + c) % n
    k = 0
    while k < r and g == 1:
      ys = y
      for j in range(min(m, r-k)):
        y = (y*y + c) % n
        q = q*abs(x-y) % n
      g = my_math.gcd(q, n)
      k += m
    r *= 2
  if g == n:
    ys = (ys*ys + c) % n
    g = gcd(n, abs(x-ys))
    while g == 1:
      ys = (ys*ys + c) % n
      g = gcd(n, abs(x-ys))
  return g

def ec_add((x1, z1), (x2, z2), (x0, z0), n):
  t1, t2 = (x1-z1)*(x2+z2), (x1+z1)*(x2-z2)
  x, z = t1+t2, t1-t2
  return (z0*x*x % n, x0*z*z % n)

def ec_double((x, z), (a, b), n):
  t1 = x+z; t1 *= t1
  t2 = x-z; t2 *= t2
  t3 = t1 - t2
  t4 = 4*b*t2
  return (t1*t4 % n, t3*(t4 + a*t3) % n)

def ec_multiply(k, p, C, n):
  # Montgomery ladder algorithm
  p0 = p
  q, p = p, ec_double(p, C, n)
  b = k >> 1
  while b > (b & -b):
    b ^= b & -b
  while b:
    if k&b:
      q, p = ec_add(p, q, p0, n), ec_double(p, C, n)
    else:
      q, p = ec_double(q, C, n), ec_add(p, q, p0, n),
    b >>= 1
  return q

def lenstra_ecf(n, m = 5):
  # Montgomery curves w/ Suyama parameterization.
  # Based on pseudocode found in:
  # "Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware"
  # Gaj, Kris et. al
  # http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
  # Phase 2 is not implemented.
  B1, B2 = 8, 13
  for i in range(m):
    pg = my_math.primes()
    p = pg.next()
    k = 1
    while p < B1:
      k *= p**int(math.log(B1, p))
      p = pg.next()
    for s in range(B1, B2):
      u, v = s*s-5, 4*s
      x = u*u*u
      z = v*v*v
      t = pow(v-u, 3, n)
      P = (x, z)
      C = (t*(3*u+v) % n, 4*x*v % n)
      Q = ec_multiply(k, P, C, n)
      g = my_math.gcd(Q[1], n)
      if 1 < g < n: return g
    B1, B2 = B2, B1 + B2


if __name__ == '__main__':
  import time
  import sys
  for n in sys.argv[1:]:
    t0 = time.time()
    i = int(n)
    f = []
    while len(f) != 1:
      f = sorted(factor(i))
      #print i, f
      i = int(''.join(map(str, f)))
    t1 = time.time()-t0
    print n, i
    print '%.3fs'%(t1)
    print

Зразок часу

    $ pypy home-prime.py 8 16 20 64 65 80
8 3331113965338635107
0.005s

16 31636373
0.001s

20 3318308475676071413
0.004s

64 1272505013723
0.000s

65 1381321118321175157763339900357651
0.397s

80 313169138727147145210044974146858220729781791489
1.537s

Середнє значення 5 становить приблизно 0,39с.


Залежності

mpqs.pyвзято безпосередньо з моєї відповіді на найшвидшу напівпервірну факторизацію з кількома дуже незначними модифікаціями.

mpqs.py

import math
import my_math
import time

# Multiple Polynomial Quadratic Sieve
def mpqs(n, verbose=False):
  if verbose:
    time1 = time.time()

  root_n = my_math.isqrt(n)
  root_2n = my_math.isqrt(n+n)

  # formula chosen by experimentation
  # seems to be close to optimal for n < 10^50
  bound = int(5 * math.log(n, 10)**2)

  prime = []
  mod_root = []
  log_p = []
  num_prime = 0

  # find a number of small primes for which n is a quadratic residue
  p = 2
  while p < bound or num_prime < 3:

    # legendre (n|p) is only defined for odd p
    if p > 2:
      leg = my_math.legendre(n, p)
    else:
      leg = n & 1

    if leg == 1:
      prime += [p]
      mod_root += [int(my_math.mod_sqrt(n, p))]
      log_p += [math.log(p, 10)]
      num_prime += 1
    elif leg == 0:
      if verbose:
        print 'trial division found factors:'
        print p, 'x', n/p
      return p

    p = my_math.next_prime(p)

  # size of the sieve
  x_max = bound*8

  # maximum value on the sieved range
  m_val = (x_max * root_2n) >> 1

  # fudging the threshold down a bit makes it easier to find powers of primes as factors
  # as well as partial-partial relationships, but it also makes the smoothness check slower.
  # there's a happy medium somewhere, depending on how efficient the smoothness check is
  thresh = math.log(m_val, 10) * 0.735

  # skip small primes. they contribute very little to the log sum
  # and add a lot of unnecessary entries to the table
  # instead, fudge the threshold down a bit, assuming ~1/4 of them pass
  min_prime = int(thresh*3)
  fudge = sum(log_p[i] for i,p in enumerate(prime) if p < min_prime)/4
  thresh -= fudge

  sieve_primes = [p for p in prime if p >= min_prime]
  sp_idx = prime.index(sieve_primes[0])

  if verbose:
    print 'smoothness bound:', bound
    print 'sieve size:', x_max
    print 'log threshold:', thresh
    print 'skipping primes less than:', min_prime

  smooth = []
  used_prime = set()
  partial = {}
  num_smooth = 0
  prev_num_smooth = 0
  num_used_prime = 0
  num_partial = 0
  num_poly = 0
  root_A = my_math.isqrt(root_2n / x_max)

  if verbose:
    print 'sieving for smooths...'
  while True:
    # find an integer value A such that:
    # A is =~ sqrt(2*n) / x_max
    # A is a perfect square
    # sqrt(A) is prime, and n is a quadratic residue mod sqrt(A)
    while True:
      root_A = my_math.next_prime(root_A)
      leg = my_math.legendre(n, root_A)
      if leg == 1:
        break
      elif leg == 0:
        if verbose:
          print 'dumb luck found factors:'
          print root_A, 'x', n/root_A
        return root_A

    A = root_A * root_A

    # solve for an adequate B
    # B*B is a quadratic residue mod n, such that B*B-A*C = n
    # this is unsolvable if n is not a quadratic residue mod sqrt(A)
    b = my_math.mod_sqrt(n, root_A)
    B = (b + (n - b*b) * my_math.mod_inv(b + b, root_A))%A

    # B*B-A*C = n <=> C = (B*B-n)/A
    C = (B*B - n) / A

    num_poly += 1

    # sieve for prime factors
    sums = [0.0]*(2*x_max)
    i = sp_idx
    for p in sieve_primes:
      logp = log_p[i]

      inv_A = my_math.mod_inv(A, p)
      # modular root of the quadratic
      a = int(((mod_root[i] - B) * inv_A)%p)
      b = int(((p - mod_root[i] - B) * inv_A)%p)

      amx = a+x_max
      bmx = b+x_max

      ax = amx-p
      bx = bmx-p

      k = p
      while k < x_max:
        sums[k+ax] += logp
        sums[k+bx] += logp
        sums[amx-k] += logp
        sums[bmx-k] += logp
        k += p

      if k+ax < x_max:  
        sums[k+ax] += logp
      if k+bx < x_max:
        sums[k+bx] += logp
      if amx-k > 0:
        sums[amx-k] += logp
      if bmx-k > 0:
        sums[bmx-k] += logp
      i += 1

    # check for smooths
    x = -x_max
    for v in sums:
      if v > thresh:
        vec = set()
        sqr = []
        # because B*B-n = A*C
        # (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n
        #               = A*(A*x*x+2*B*x+C)
        # gives the congruency
        # (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n)
        # because A is chosen to be square, it doesn't need to be sieved
        sieve_val = (A*x + B+B)*x + C

        if sieve_val < 0:
          vec = {-1}
          sieve_val = -sieve_val

        for p in prime:
          while sieve_val%p == 0:
            if p in vec:
              # keep track of perfect square factors
              # to avoid taking the sqrt of a gigantic number at the end
              sqr += [p]
            vec ^= {p}
            sieve_val = int(sieve_val / p)

        if sieve_val == 1:
          # smooth
          smooth += [(vec, (sqr, (A*x+B), root_A))]
          used_prime |= vec
        elif sieve_val in partial:
          # combine two partials to make a (xor) smooth
          # that is, every prime factor with an odd power is in our factor base
          pair_vec, pair_vals = partial[sieve_val]
          sqr += list(vec & pair_vec) + [sieve_val]
          vec ^= pair_vec
          smooth += [(vec, (sqr + pair_vals[0], (A*x+B)*pair_vals[1], root_A*pair_vals[2]))]
          used_prime |= vec
          num_partial += 1
        else:
          # save partial for later pairing
          partial[sieve_val] = (vec, (sqr, A*x+B, root_A))
      x += 1

    prev_num_smooth = num_smooth
    num_smooth = len(smooth)
    num_used_prime = len(used_prime)

    if verbose:
      print 100 * num_smooth / num_prime, 'percent complete\r',

    if num_smooth > num_used_prime and num_smooth > prev_num_smooth:
      if verbose:
        print '%d polynomials sieved (%d values)'%(num_poly, num_poly*x_max*2)
        print 'found %d smooths (%d from partials) in %f seconds'%(num_smooth, num_partial, time.time()-time1)
        print 'solving for non-trivial congruencies...'

      used_prime_list = sorted(list(used_prime))

      # set up bit fields for gaussian elimination
      masks = []
      mask = 1
      bit_fields = [0]*num_used_prime
      for vec, vals in smooth:
        masks += [mask]
        i = 0
        for p in used_prime_list:
          if p in vec: bit_fields[i] |= mask
          i += 1
        mask <<= 1

      # row echelon form
      col_offset = 0
      null_cols = []
      for col in xrange(num_smooth):
        pivot = col-col_offset == num_used_prime or bit_fields[col-col_offset] & masks[col] == 0
        for row in xrange(col+1-col_offset, num_used_prime):
          if bit_fields[row] & masks[col]:
            if pivot:
              bit_fields[col-col_offset], bit_fields[row] = bit_fields[row], bit_fields[col-col_offset]
              pivot = False
            else:
              bit_fields[row] ^= bit_fields[col-col_offset]
        if pivot:
          null_cols += [col]
          col_offset += 1

      # reduced row echelon form
      for row in xrange(num_used_prime):
        # lowest set bit
        mask = bit_fields[row] & -bit_fields[row]
        for up_row in xrange(row):
          if bit_fields[up_row] & mask:
            bit_fields[up_row] ^= bit_fields[row]

      # check for non-trivial congruencies
      for col in null_cols:
        all_vec, (lh, rh, rA) = smooth[col]
        lhs = lh   # sieved values (left hand side)
        rhs = [rh] # sieved values - n (right hand side)
        rAs = [rA] # root_As (cofactor of lhs)
        i = 0
        for field in bit_fields:
          if field & masks[col]:
            vec, (lh, rh, rA) = smooth[i]
            lhs += list(all_vec & vec) + lh
            all_vec ^= vec
            rhs += [rh]
            rAs += [rA]
          i += 1

        factor = my_math.gcd(my_math.list_prod(rAs)*my_math.list_prod(lhs) - my_math.list_prod(rhs), n)
        if 1 < factor < n:
          break
      else:
        if verbose:
          print 'none found.'
        continue
      break

  if verbose:
    print 'factors found:'
    print factor, 'x', n/factor
    print 'time elapsed: %f seconds'%(time.time()-time1)
  return factor

if __name__ == "__main__":
  import argparse
  parser = argparse.ArgumentParser(description='Uses a MPQS to factor a composite number')
  parser.add_argument('composite', metavar='number_to_factor', type=long, help='the composite number to factor')
  parser.add_argument('--verbose', dest='verbose', action='store_true', help="enable verbose output")
  args = parser.parse_args()

  if args.verbose:
    mpqs(args.composite, args.verbose)
  else:
    time1 = time.time()
    print mpqs(args.composite)
    print 'time elapsed: %f seconds'%(time.time()-time1)

my_math.pyбереться з тієї ж посади mpqs.py, що і я, але я також додав до генератора необмежених простих чисел, який я використав у своїй відповіді на пошук найбільшого розриву між хорошими праймерами .

my_math.py

# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


# divide and conquer list product
def list_prod(a):
  size = len(a)
  if size == 1:
    return a[0]
  return list_prod(a[:size>>1]) * list_prod(a[size>>1:])


# greatest common divisor of a and b
def gcd(a, b):
  while b:
    a, b = b, a%b
  return a


# extended gcd
def ext_gcd(a, m):
  a = int(a%m)
  x, u = 0, 1
  while a:
    x, u = u, x - (m/a)*u
    m, a = a, m%a
  return (m, x, u)


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow(a, (m-1) >> 1, m)


# modular inverse of a mod m
def mod_inv(a, m):
  return ext_gcd(a, m)[1]


# modular sqrt(n) mod p
# p must be prime
def mod_sqrt(n, p):
  a = n%p
  if p%4 == 3:
    return pow(a, (p+1) >> 2, p)
  elif p%8 == 5:
    v = pow(a << 1, (p-5) >> 3, p)
    i = ((a*v*v << 1) % p) - 1
    return (a*v*i)%p
  elif p%8 == 1:
    # Shank's method
    q = p-1
    e = 0
    while q&1 == 0:
      e += 1
      q >>= 1

    n = 2
    while legendre(n, p) != p-1:
      n += 1

    w = pow(a, q, p)
    x = pow(a, (q+1) >> 1, p)
    y = pow(n, q, p)
    r = e
    while True:
      if w == 1:
        return x

      v = w
      k = 0
      while v != 1 and k+1 < r:
        v = (v*v)%p
        k += 1

      if k == 0:
        return x

      d = pow(y, 1 << (r-k-1), p)
      x = (x*d)%p
      y = (d*d)%p
      w = (w*y)%p
      r = k
  else: # p == 2
    return a


#integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = c.bit_length()

  a = d>>1
  if d&1:
    x = 1 << a
    y = (x + (n >> a)) >> 1
  else:
    x = (3 << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x


# integer cbrt of n
def icbrt(n):
  d = n.bit_length()

  if d%3 == 2:
    x = 3 << d/3-1
  else:
    x = 1 << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = (x * x)%n
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  P = 1
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = 0
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = ((U + V) * inv_2)%n, ((D*U + V) * inv_2)%n
      q = (q * Q)%n
      t -= 1
    else:
      # U, V of n*2
      U, V = (U * V)%n, (V * V - 2 * q)%n
      q = (q * q)%n
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = (U * V)%n, (V * V - 2 * q)%n
    q = (q * q)%n
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = int(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# an infinite prime number generator
def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve:
          nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      elif n < q:
        yield n
      else:
        sieve[q + dindices[p%105]*p] = p
        p = pg.next()
        q = p*p


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = 211
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False

2

Python 2 + primefac 1.1

У мене немає Raspberry Pi, щоб перевірити його.

from primefac import primefac

def HP(n):
    factors = list(primefac(n))

    #print n, factors

    if len(factors) == 1 and n in factors:
        return n

    n = ""
    for f in sorted(factors):
        n += str(f)
    return HP(int(n))

Спробуйте в Інтернеті

primefacФункція повертає список всіх простих факторів n. У своєму визначенні він називає isprime(n), в якому використовується комбінація пробного поділу, метод Ейлера та тест первинності Міллера-Рабіна. Я рекомендую завантажити пакет і переглянути джерело.

Я спробував використовувати n = n * 10 ** int(floor(log10(f))+1) + fзамість рядкового конкатенації, але це набагато повільніше.


pip install primefacпрацював на мене, хоча 65 та 80, здається, не працюють на Windows, через те, що forkу фоновому режимі.
прим

Дивитись на джерело primefacбуло досить смішно, оскільки є чимало коментарів з TODOабоfind out why this is throwing errors
mbomb007

Я також теж зробив. Автор фактично використовує мої mpqs! ... трохи модифікований. Рядок 551 # This occasionally throws IndexErrors.Так, тому що він зняв перевірку на наявність більшої кількості гладких, ніж факторів праймес.
прим

Ви повинні йому допомогти. :)
mbomb007

Я, мабуть, зв’яжусь з ним, коли закінчуся цим завданням, я маю намір трохи попрацювати над оптимізацією mpqs (треба перемогти математику, я прав?).
примо

2

C #

using System;
using System.Linq;

public class Program
{
    public static void Main(string[] args) {

        Console.Write("Enter Number: ");

        Int64 n = Convert.ToInt64(Console.ReadLine());

        Console.WriteLine("Start Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.WriteLine("Number, Factors");

        HomePrime(n);

        Console.WriteLine("End Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.ReadLine();
    }

    public static void HomePrime(Int64 num) {
        string s = FindFactors(num);
        if (CheckPrime(num,s) == true) {
            Console.WriteLine("{0} is prime", num);
        } else {
            Console.WriteLine("{0}, {1}", num, s);
            HomePrime(Convert.ToInt64(RemSp(s)));
        }
    }

    public static string FindFactors(Int64 num) {
        Int64 n, r, t = num;
        string f = "";
        for (n = num; n >= 2; n--) {
            r = CalcP(n, t);
            if (r != 0) {
                f = f + " " + r.ToString();
                t = n / r;
                n = n / r + 1;
            }
        }
        return f;
    }

    public static Int64 CalcP(Int64 num, Int64 tot) {
        for (Int64 i = 2; i <= tot; i++) {
            if (num % i == 0) {
                return i;
            } 
        }
        return 0;
    }

    public static string RemSp(string str) {
        return new string(str.ToCharArray().Where(c => !Char.IsWhiteSpace(c)).ToArray());
    }

    public static bool CheckPrime(Int64 num, string s) {
        if (s == "") {
            return false;
        } else if (num == Convert.ToInt64(RemSp(s))) {
            return true;
        }
        return false;
    }

}

Це більш оптимізована версія попереднього коду з видаленням зайвих зайвих деталей.

Вихід (на моєму ноутбуці i7):

Enter Number: 16
Start Time: 18:09:51.636445
Number, Factors
16,  2 2 2 2
2222,  2 11 101
211101,  3 11 6397
3116397,  3 163 6373
31636373 is prime
End Time: 18:09:51.637954

Тестуйте онлайн


Зробити масив із заздалегідь визначеними праймерами / значеннями, я вважаю, оскільки це стандартна лазівка.
П. Ктінос

@ P.Ktinos Я теж думаю, що так чи інакше було б занадто великим.
Маріо

1

Perl + ntheory, HP (80) за 0,35 с на ПК

Ніяких Raspberry Pi під рукою.

use ntheory ":all";
use feature "say";
sub hp {
  my $n = shift;
  while (!is_prime($n)) {
    $n = join "",factor($n);
  }
  $n;
}
say hp($_) for (16,20,64,65,80);

Тест на первинність - ES BPSW, плюс один випадковий базовий MR для більшої кількості. При такому розмірі ми могли б використовувати is_provable_prime(n-1 та / або ECPP) без помітної різниці швидкостей, але це зміниться для> 300-значних значень без реальної користі. Факторинг включає випробування, потужність, Rho-Brent, P-1, SQUFOF, ECM, QS залежно від розміру.

Для цих входів він працює приблизно з тією ж швидкістю, що і Шарль 'Pari / GP код на сайті OEIS. ntheory має швидший факторинг для невеликих чисел, і мій P-1 і ECM є досить хорошими, але QS не є великим, тому я б очікував, що Pari в якийсь момент буде швидшим.


1
Я виявив, що будь-який фактор, знайдений P-1, також був знайдений - швидше - ECM, тому я його відкинув (те саме стосується Williams P + 1). Можливо, я спробую додати SQUFOF. Блискуча бібліотека, btw.
прим

1
Також use feature "say";.
прим
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.