Садити дерева в парку - якнайшвидше!


20

Ця проблема натхненна цим додатком . Тестові приклади запозичені з цього додатка.


Це виклик , де мета - вирішити найбільші тестові випадки за найменший проміжок часу. Наведено кілька менших тестових випадків, щоб люди могли швидше перевірити свої алгоритми.


Вам буде надана квадратна вхідна сітка розмірів n-by-n де 9 <= n <= 12 . Ця сітка буде розділена на n областей, де клітинки кожної області мають унікальні ідентифікатори (я буду використовувати в цьому тексті маленькі літери від al , але ви можете вибрати що завгодно, наприклад, цілі числа 1-12 ) .

Вхід може виглядати приблизно так (необов'язковий формат введення):

aabbbbbcc
adddbbbcc
adeeecccc
adddefgcc
hhhdifggg
hdddifffg
hhhiifffg
hihiifffg
iiiiiiggg

Або простіше уявити:

введіть тут опис зображення

Виклик:

Ви повинні розмістити 2 * n дерев у цьому парку, відповідно до таких правил:

  • На стовпчик повинно бути рівно 2 дерева та 2 дерева на ряд
  • У всіх районах має бути рівно 2 дерева.
  • Жодне дерево не може бути сусіднім з іншим деревом, вертикально, горизонтально або по діагоналі

Рішення для макета вище:

введіть тут опис зображення

Примітка. На кожну головоломку існує лише одне рішення

Додаткові правила:

  • Формати введення та виведення необов’язкові
    • Вихідним може бути, наприклад, список індексів, сітка з 1/0, яка вказує, чи є дерево в цьому положенні, або модифікована версія вводу, де вказані дерева.
  • Час виконання повинно бути детермінованим
  • Програма повинна закінчитися 1 хвилину на комп'ютері @ isaacg
    • Характеристики: 4 процесора, i5-4300U процесор при 1,9 ГГц, 7,5 г оперативної пам’яті.
  • Якщо ваша програма не зможе вирішити два найбільші тестові справи за одну хвилину, то час для другого за величиною ( n = 11 ) буде вашим балом. Ви програєте проти рішення, яке вирішує найбільшу справу.

Тестові приклади:

Я можу відредагувати цей список, якщо здається, що подання підганяються під ці тестові випадки.

12 на 12 :

--- Input ---
aaaaabccccdd
aaaaabccccdd
aaaaabbbbddd
eeeafffgbghh
eeaafffgbghh
eefffffggghh
eeefijffghhh
iieiijjjjkhh
iiiiijjjjkhk
lljjjjjjjkkk
llllllkkkkkk
llllllkkkkkk
--- Solution ---
aaaaabcccCdD
aaaaaBcCccdd
aAaaabbbbdDd
eeeaffFgBghh
eeAaFffgbghh
eefffffGgGhh
EeefijffghhH
iiEiIjjjjkhh
IiiiijjjjkHk
lljJjJjjjkkk
lLllllkkKkkk
lllLllKkkkkk

11 до 11 :

--- Input ---
aaaaaaabbcc
adddabbbbcc
edddbbbbbbc
eddddbbbbbb
effffggghhh
effffgghhii
eefffjjhhii
eeeejjjhhii
eeejjjjkiii
jjjjjjkkiii
jjjjjkkkiii
--- Solution ---
aaAaaaabbCc
adddAbBbbcc
eDddbbbbbbC
eddDdBbbbbb
effffggGhHh
eFfffGghhii
eefFfjjhHii
EeeejjjhhiI
eeEjjjjKiii
JjjjJjkkiii
jjjjjkKkIii

10 на 10

--- Input ---
aaaaabccdd
aeaabbbccd
aeaabfbgcd
eeeaafggcd
eeeaafghcd
eeeiifghcd
ieiiigghcd
iiijighhcd
jjjjighhcd
jjjggghhdd
--- Solution ---
aaAaabccdD
aeaaBbBccd
aEaabfbgcD
eeeaaFgGcd
eEeAafghcd
eeeiiFghCd
IeiIigghcd
iiijigHhCd
JjJjighhcd
jjjgGghHdd

9 на 9

--- Input ---
aabbbbbcc
adddbbbcc
adeeecccc
adddefgcc
hhhdifggg
hdddifffg
hhhiifffg
hihiifffg
iiiiiiggg
--- Solution ---
aAbBbbbcc
adddbbBcC
adEeEcccc
AdddefgCc
hhhDiFggg
hDddifffG
hhhiIfFfg
HiHiifffg
iiiiiIgGg
--- Input ---
aaabbbccc
aaaabbccc
aaaddbcce
ffddddcce
ffffddeee
fgffdheee
fggfhhhee
iggggheee
iiigggggg
--- Solution ---
aaAbBbccc
AaaabbcCc
aaaDdBcce
fFddddcCe
fffFdDeee
fGffdheeE
fggfHhHee
IggggheeE
iiIgggGgg

"Формати введення та виведення необов’язкові, але повинні бути однаковими" Що це означає? Чи не можу я вивести список списків, що містять 1 і 0 для дерев та не дерев, не піклуючись про виведення площ?
Фаталізувати

@Fatalize, відредаговано. Я думаю, що виведення списку індексів або сітки з пропозицією 1/0 - це гарна ідея.
Стюі Гріффін

1
Інформація (якщо я правильно обчислив): Існує 3647375398569086976 конфігурації, щоб помістити 24 дерева в сітку 12 * 12, задовольняти лише (1): There shall be exactly 2 trees per column, and 2 trees per rowтому груба сила, мабуть, неможлива.
користувач202729

"не повинно бути великою проблемою" : я особисто вважаю, що це так. Моя поточна реалізація вирішує перший тестовий випадок через ~ 150 мс і третій за 5 секунд, але не вдається вирішити останній (який є «лише» 11x11) за будь-яку розумну кількість часу. Ймовірно, знадобиться деяка значно агресивніша обрізка вперед - і, отже, значна кількість додаткового коду - для завершення протягом 1 хвилини.
Арнольд

1
@Arnauld, я змінив максимум на 11, оскільки це найбільший тестовий випадок. Ви можете розмістити своє рішення (як дійсне, конкуруюче подання), але воно не виграє, якщо хтось опублікує рішення, яке вирішує всі тестові випадки, незалежно від довжини коду. Справедливий?
Стюі Гріффін

Відповіді:


7

JavaScript (ES6), 271 байт

Вводить введення як масив масивів символів. Повертає масив бітових масок (цілих чисел), що описують положення дерев у кожному рядку, де найменший значущий біт - це лівий край лівої позиції.

f=(a,p=0,r=[S=y=0],w=a.length)=>a.some((R,y)=>a.some((_,x)=>r[y]>>x&1&&(o[k=R[x]]=-~o[k])>2),o=[])?0:y<w?[...Array(1<<w)].some((_,n)=>(k=n^(x=n&-n))<=x*2|k&-k^k|n&(p|p/2|p*2)||r.some((A,i)=>r.some((B,j)=>A&B&n&&i<y&j<i))?0:(w=r[y],f(a,r[y++]=n,r),r[--y]=w,S))&&S:S=[...r]

Відформатовано та прокоментовано

f = (                                           // given:
  a,                                            //   - a = input matrix
  p = 0,                                        //   - p = previous bitmask
  r = [                                         //   - r = array of tree bitmasks
        S = y = 0 ],                            //   - S = solution / y = current row
  w = a.length                                  //   - w = width of matrix
) =>                                            //
  a.some((R, y) => a.some((_, x) =>             // if there's at least one area with more
    r[y] >> x & 1 && (o[k = R[x]] = -~o[k]) > 2 // than two trees:
  ), o = []) ?                                  //
    0                                           //   abort right away
  :                                             // else:
    y < w ?                                     //   if we haven't reached the last row:
      [...Array(1 << w)].some((_, n) =>         //     for each possible bitmask n:
        (k = n ^ (x = n & -n)) <= x * 2 |       //       if the bitmask does not consist of
        k & - k ^ k |                           //       exactly two non-consecutive bits,
        n & (p | p / 2 | p * 2) ||              //       or is colliding with the previous
        r.some((A, i) => r.some((B, j) =>       //       bitmask, or generates more than two
          A & B & n && i < y & j < i            //       trees per column:
        )) ?                                    //
          0                                     //         yield 0
        :                                       //       else:
          (                                     //
            w = r[y],                           //         save the previous bitmask
            f(a, r[y++] = n, r),                //         recursive call with the new one
            r[--y] = w,                         //         restore the previous bitmask
            S                                   //         yield S
          )                                     //
      ) && S                                    //     end of some(): return false or S
    :                                           //   else:
      S = [...r]                                //     this is a solution: save a copy in S

Тестові кейси

Цей фрагмент містить додаткову функцію для відображення результатів у більш читаному форматі. Занадто повільно вирішувати останній тестовий випадок.

Очікуваний час виконання: ~ 5 секунд.


Примітка ОП: Ця заявка була зроблена, коли виклик був викликом з кодовим гольфом. Тому він цілком дійсний, хоча він не оптимізований під поточний критерій виграшу!
Стюі Гріффін

Хронометраж: триває більше хвилини на 11x11.
isaacg

Ми в солінні, можливо, ви можете допомогти. Чи можете ви придумати будь-який спосіб генерувати нетривіальні більші екземпляри головоломки?
isaacg

7

C, офіційний час: 5 мс за 12х12

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <omp.h>

#define valT char
#define posT int

#ifndef _OPENMP
#  warning Building without OpenMP support
#  define omp_get_max_threads() 1
#  define omp_get_num_threads() 1
#  define omp_get_thread_num() 0
#endif

#define MIN_THREADED_SIZE 11

static void complete(posT n, valT *workspace) {
    const posT s = n * 3 + 2;

    const valT *regions = workspace;
    valT *output = &workspace[n*2+1];

    for(posT y = 0; y < n; ++ y) {
        for(posT x = 0; x < n; ++ x) {
//          putchar(output[y*s+x] ? '*' : '-');
            putchar(regions[y*s+x] + (output[y*s+x] ? 'A' : 'a'));
        }
        putchar('\n');
    }

    _Exit(0);
}

static void solveB(const posT n, valT *workspace, valT *pops, const posT y) {
    const posT s = n * 3 + 2;

    const valT *regions = workspace;
    const valT *remaining = &workspace[n];
    valT *output = &workspace[n*2+1];

    for(posT r = 0; r < n; ++ r) {
        if(pops[r] + remaining[r] < 2) {
            return;
        }
    }

    for(posT t1 = 0; t1 < n - 2; ++ t1) {
        posT r1 = regions[t1];
        if(output[t1+1-s]) {
            t1 += 2;
            continue;
        }
        if(output[t1-s]) {
            ++ t1;
            continue;
        }
        if((pops[t1+n] | pops[r1]) & 2 || output[t1-1-s]) {
            continue;
        }
        output[t1] = 1;
        ++ pops[t1+n];
        ++ pops[r1];
        for(posT t2 = t1 + 2; t2 < n; ++ t2) {
            posT r2 = regions[t2];
            if(output[t2+1-s]) {
                t2 += 2;
                continue;
            }
            if(output[t2-s]) {
                ++ t2;
                continue;
            }
            if((pops[t2+n] | pops[r2]) & 2 || output[t2-1-s]) {
                continue;
            }
            output[t2] = 1;
            ++ pops[t2+n];
            ++ pops[r2];
            if(y == 0) {
                complete(n, &workspace[-s*(n-1)]);
            }
            solveB(n, &workspace[s], pops, y - 1);
            output[t2] = 0;
            -- pops[t2+n];
            -- pops[r2];
        }
        output[t1] = 0;
        -- pops[t1+n];
        -- pops[r1];
    }
}

static void solve(const posT n, valT *workspace) {
    const posT s = n * 3 + 2;

    valT *regions = workspace;
    valT *remaining = &workspace[n];
    valT *pops = &workspace[n*s];
//  memset(&remaining[n*s], 0, n * sizeof(valT));

    for(posT y = n; (y --) > 0;) {
        memcpy(&remaining[y*s], &remaining[(y+1)*s], n * sizeof(valT));
        for(posT x = 0; x < n; ++ x) {
            valT r = regions[y*s+x];
            valT *c = &remaining[y*s+r];
            valT *b = &pops[r*3];
            if(*c == 0) {
                *c = 1;
                b[0] = y - 1;
                b[1] = x - 1;
                b[2] = x + 1;
            } else if(x < b[1] || x > b[2] || y < b[0]) {
                *c = 2;
            } else {
                b[1] = b[1] > (x - 1) ? b[1] : (x - 1);
                b[2] = b[2] < (x + 1) ? b[2] : (x + 1);
            }
        }
//      memset(&output[y*s], 0, (n+1) * sizeof(valT));
    }
    memset(pops, 0, n * 2 * sizeof(valT));

    posT sz = (n + 1) * s + n * 3;
    if(n >= MIN_THREADED_SIZE) {
        for(posT i = 1; i < omp_get_max_threads(); ++ i) {
            memcpy(&workspace[i*sz], workspace, sz * sizeof(valT));
        }
    }

#pragma omp parallel for if (n >= MIN_THREADED_SIZE)
    for(posT t1 = 0; t1 < n - 2; ++ t1) {
        valT *workspace2 = &workspace[omp_get_thread_num()*sz];
        valT *regions = workspace2;
        valT *output = &workspace2[n*2+1];
        valT *pops = &workspace2[n*s];

        posT r1 = regions[t1];
        output[t1] = pops[t1+n] = pops[r1] = 1;
        for(posT t2 = t1 + 2; t2 < n; ++ t2) {
            posT r2 = regions[t2];
            output[t2] = pops[t2+n] = 1;
            ++ pops[r2];
            solveB(n, &regions[s], pops, n - 2);
            output[t2] = pops[t2+n] = 0;
            -- pops[r2];
        }
        output[t1] = pops[t1+n] = pops[r1] = 0;
    }
}

int main(int argc, const char *const *argv) {
    if(argc < 2) {
        fprintf(stderr, "Usage: %s 'grid-here'\n", argv[0]);
        return 1;
    }

    const char *input = argv[1];
    const posT n = strchr(input, '\n') - input;
    const posT s = n * 3 + 2;

    posT sz = (n + 1) * s + n * 3;
    posT threads = (n >= MIN_THREADED_SIZE) ? omp_get_max_threads() : 1;
    valT *workspace = (valT*) calloc(sz * threads, sizeof(valT));
    valT *regions = workspace;

    for(posT y = 0; y < n; ++ y) {
        for(posT x = 0; x < n; ++ x) {
            regions[y*s+x] = input[y*(n+1)+x] - 'a';
        }
    }

    solve(n, workspace);

    fprintf(stderr, "Failed to solve grid\n");
    return 1;
}

Скомпільовано з GCC 7 з використанням прапорів -O3та -fopenmp. Має мати подібні результати на будь-якій версії GCC з встановленим OpenMP.

gcc-7 Trees.c -O3 -fopenmp -o Trees

Формат введення та виведення вказаний у запитанні.

На моїй машині це займає 0.009s 0.008s 0.005s для 12х12 , наприклад, і 0.022s 0.020s 0.019s запускати всі приклади. На еталонній машині isaacg повідомляє про 5 мс для прикладу 12х12, використовуючи оригінальну (без потоку) версію коду.

Використання:

./Trees 'aaabbbccc
aaaabbccc
aaaddbcce
ffddddcce
ffffddeee
fgffdheee
fggfhhhee
iggggheee
iiigggggg'

Просто простий розгалужувач, що працює над одним рядом. Він працює з хорошою швидкістю, розпізнаючи неможливі ситуації на ранніх стадіях (наприклад, в регіоні не залишилося осередків, але менше 2 дерев у регіоні).

Перше оновлення покращує звернення до кешу, зберігаючи пов’язані дані в пам’яті та робить можливі обчислення дерев, що залишилися в сегменті, трохи розумнішими (тепер пояснюється той факт, що дерева не можуть бути суміжними). Він також витягує саму зовнішню петлю, щоб було потрібно менше спеціальних випадків у найгарячішій частині алгоритму.

Друге оновлення робить зовнішній цикл, який працює паралельно через доступні процесори (використовуючи OpenMP), надаючи лінійне збільшення швидкості. Це ввімкнено лише для n> = 11, оскільки накладні витрати на нерестові нитки перевищують переваги для менших сіток.


Офіційний термін: 5 мс для 12х12. Якщо хтось наблизиться, нам знадобляться більші тестові справи.
isaacg

Ми в солінні, можливо, ви можете допомогти. Чи можете ви придумати будь-який спосіб генерувати нетривіальні більші екземпляри головоломки?
isaacg

@isaacg Добре з ілюстрованого прикладу, схоже, що оригінальні сітки були зроблені, розміщуючи спочатку дерева (за рицарським малюнком із незначними змінами в цьому прикладі, але я думаю, що будь-який візерунок із 2 деревами на рядок та стовпець буде працювати), а потім підходить регіонам навколо їх, щоб кожен регіон містив 2 дерева. Схоже, це має бути досить простим методом, який слід використовувати людині для довільно великих сіток.
Дейв

Насправді, переглядаючи знову, це не рицарський візерунок з незначними змінами, а візерунок обгортання, коли кожне дерево зміщене (1,2) від попереднього. Коли у вас є візерунок, ви можете перестановити рядки та стовпці, щоб зробити менш структуровані рішення, до тих пір, поки він не залишить дерева поруч.
Дейв

5

Java (OpenJDK 8) , офіційний термін: 1,2 секунди на 12x12

редагувати: більше не код гольфу

import java.util.*;

// Callable method, takes an int[][] and modifies it
static void f(int[][] areas){
    List<List<BitSet>> areaBitSets = new ArrayList<>();
    List<List<BitSet>> areaTreeBitSets = new ArrayList<>();
    for(int i = 0; i < areas.length; i++){
        areaBitSets.add(new ArrayList<BitSet>());
        areaTreeBitSets.add(new ArrayList<BitSet>());
    }

    // Add a bitset to our list representing each possible square, grouped by area
    for(int i=0; i < areas.length; i++){
        for(int j=0; j < areas.length; j++){
            BitSet b = new BitSet();
            b.set(i*areas.length + j);
            areaBitSets.get(areas[i][j]).add(b);
        }
    }

    // Fold each set onto itself so each area bitset has two trees
    for(int i=0; i < areas.length; i++){
        for(int j=0; j<areaBitSets.get(i).size()-1; j++){
            for(int k=j+1; k <areaBitSets.get(i).size(); k++){
                if(canFoldTogether(areaBitSets.get(i).get(j),areaBitSets.get(i).get(k), areas.length)){
                    BitSet b = (BitSet)areaBitSets.get(i).get(j).clone();
                    b.or(areaBitSets.get(i).get(k));
                    areaTreeBitSets.get(i).add(b);
                }
            }
        }
    }

    // Starting with area 0 add each area one at a time doing Cartesian products
    Queue<BitSet> currentPossibilities = new LinkedList<>();
    Queue<BitSet> futurePossibilities = new LinkedList<>();
    currentPossibilities.addAll(areaTreeBitSets.get(0));

    for(int i=1; i < areaTreeBitSets.size(); i++){
        while(!currentPossibilities.isEmpty()){
            BitSet b= (BitSet)currentPossibilities.poll().clone();

            for(BitSet c: areaTreeBitSets.get(i)){
                if(canFoldTogether(b,c,areas.length)){
                    BitSet d=(BitSet)b.clone();
                    d.or(c);
                    futurePossibilities.add(d);
                }
            }
        }
        currentPossibilities.addAll(futurePossibilities);
        futurePossibilities.clear();
    }

    // Get final output and modify the array
    BitSet b = currentPossibilities.poll();
    for(int i=0; i<areas.length*areas.length; i++){
        areas[i/areas.length][i%areas.length] = b.get(i)?1:0;
    }
}

// Helper method which determines whether combining two bitsets
// will still produce a valid output
static boolean canFoldTogether(BitSet a, BitSet b, int size){

    // See if there are trees too close to each other
    int c=-1;
    while((c=a.nextSetBit(c+1))>=0){
        int d=-1;
        while((d=b.nextSetBit(d+1))>=0){
            int r1=c/size;
            int r2=d/size;
            int c1=c%size;
            int c2=d%size;

            int rDifference = r1>r2 ? r1-r2 : r2-r1;
            int cDifference = c1>c2 ? c1-c2 : c2-c1;
            if(rDifference<2 && cDifference<2)
                return false;
        }
    }

    // Check for row and column cardinality
    BitSet f,g;
    for(int i=0; i<size; i++){
        f = new BitSet();
        f.set(i*size,(i+1)*size);
        g=(BitSet)f.clone();
        f.and(a);
        g.and(b);
        f.or(g);
        if(f.cardinality()>2){
            return false;
        }


        f=new BitSet();
        for(int j = 0; j<size; j++){
            f.set(j*size+i);
        }
        g=(BitSet)f.clone();
        f.and(a);
        g.and(b);
        f.or(g);
        if(f.cardinality()>2){
            return false;
        }
    }

    return true;
}

Спробуйте в Інтернеті!

Посилання TIO призначено для тестового випадку 12x12. TIO повідомляє про 2,429 секунди за час виконання.

Бере масив цілих чисел як вхідний і модифікує масив, щоб містити 1s для дерев і 0s для не дерев.

Це працює для всіх тестів. Найбільша випробувальна машина працює на моїй машині менше ніж за секунду, хоча у мене досить потужна машина

Тестовий код для 12x12, може змінюватися для інших

public static void main(String[] args){
    int[][] test = {{0,  0,  0,  0,  0,  1,  2,  2,  2,  2,  3,  3}, 
            {0,  0,  0,  0,  0,  1,  2,  2,  2,  2,  3,  3}, 
            {0,  0,  0,  0,  0,  1,  1,  1,  1,  3,  3,  3}, 
            {4,  4,  4,  0,  5,  5,  5,  6,  1,  6,  7,  7}, 
            {4,  4,  0,  0,  5,  5,  5,  6,  1,  6,  7,  7}, 
            {4,  4,  5,  5,  5,  5,  5,  6,  6,  6,  7,  7}, 
            {4,  4,  4,  5,  8,  9,  5,  5,  6,  7,  7,  7}, 
            {8,  8,  4,  8,  8,  9,  9,  9,  9,  10,  7,  7}, 
            {8,  8,  8,  8,  8,  9,  9,  9,  9,  10,  7,  10}, 
            {11,  11,  9,  9,  9,  9,  9,  9,  9,  10,  10,  10}, 
            {11,  11,  11,  11,  11,  11,  10,  10,  10,  10,  10,  10}, 
            {11,  11,  11,  11,  11,  11,  10,  10,  10,  10,  10,  10}};

    long l = System.currentTimeMillis();
    f(test);
    System.out.println("12x12: " + (System.currentTimeMillis() - l) + "ms");

    for(int[] t : test){
        System.out.println(Arrays.toString(t));
    }

}

Виробляє це на моїй машині:

12x12: 822ms
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
[0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]

Примітка ОП: Ця заявка була зроблена, коли виклик був викликом з кодовим гольфом. Тому він цілком справедливий, хоча він не (лише) оптимізований для поточного критерію виграшу!
Стюі Гріффін

@StewieGriffin дякую за коментар. Коли я отримаю шанс, я попрацюю над тим, щоб очистити його, оскільки це вже не код гольфу, і я побачу, чи зможу оптимізувати його до деякої швидкості
PunPun1000

Офіційний час: 1,2 секунди на 12х12.
isaacg

Ми в солінні, можливо, ви можете допомогти. Чи можете ви придумати будь-який спосіб генерувати нетривіальні більші екземпляри головоломки?
isaacg

4

Клінго , ≈ 7 мс для 12 × 12, 116 байт

{t(X,Y):c(X,Y,Z)}=2:-Z=1..n.
:-X=1..n,{t(X,1..n)}!=2.
:-Y=1..n,{t(1..n,Y)}!=2.
:-t(X,Y),t(X+1,Y;X+1,Y+1;X,Y+1;X-1,Y+1).

(Нові рядки необов’язкові і не враховуються.)

Запустіть, clingo plant.lp - -c n=<n>де <n>розмір сітки. Вхідний формат являє собою список c(X,Y,Z).тверджень для кожного осередку ( X, Y) кольоровий Z, з 1 ≤ X, Y, Zn, розділені пробілами необов'язковими. Вихід включає t(X,Y)кожне дерево в ( X, Y).

Час досить безглуздий, оскільки в основному це лише час запуску, тому вважайте це голосуванням для більших тестових випадків.

Демо

$ clingo plant.lp -c n=12 - <<EOF
> c(1,1,1). c(2,1,1). c(3,1,1). c(4,1,1). c(5,1,1). c(6,1,2). c(7,1,3). c(8,1,3). c(9,1,3). c(10,1,3). c(11,1,4). c(12,1,4).
> c(1,2,1). c(2,2,1). c(3,2,1). c(4,2,1). c(5,2,1). c(6,2,2). c(7,2,3). c(8,2,3). c(9,2,3). c(10,2,3). c(11,2,4). c(12,2,4).
> c(1,3,1). c(2,3,1). c(3,3,1). c(4,3,1). c(5,3,1). c(6,3,2). c(7,3,2). c(8,3,2). c(9,3,2). c(10,3,4). c(11,3,4). c(12,3,4).
> c(1,4,5). c(2,4,5). c(3,4,5). c(4,4,1). c(5,4,6). c(6,4,6). c(7,4,6). c(8,4,7). c(9,4,2). c(10,4,7). c(11,4,8). c(12,4,8).
> c(1,5,5). c(2,5,5). c(3,5,1). c(4,5,1). c(5,5,6). c(6,5,6). c(7,5,6). c(8,5,7). c(9,5,2). c(10,5,7). c(11,5,8). c(12,5,8).
> c(1,6,5). c(2,6,5). c(3,6,6). c(4,6,6). c(5,6,6). c(6,6,6). c(7,6,6). c(8,6,7). c(9,6,7). c(10,6,7). c(11,6,8). c(12,6,8).
> c(1,7,5). c(2,7,5). c(3,7,5). c(4,7,6). c(5,7,9). c(6,7,10). c(7,7,6). c(8,7,6). c(9,7,7). c(10,7,8). c(11,7,8). c(12,7,8).
> c(1,8,9). c(2,8,9). c(3,8,5). c(4,8,9). c(5,8,9). c(6,8,10). c(7,8,10). c(8,8,10). c(9,8,10). c(10,8,11). c(11,8,8). c(12,8,8).
> c(1,9,9). c(2,9,9). c(3,9,9). c(4,9,9). c(5,9,9). c(6,9,10). c(7,9,10). c(8,9,10). c(9,9,10). c(10,9,11). c(11,9,8). c(12,9,11).
> c(1,10,12). c(2,10,12). c(3,10,10). c(4,10,10). c(5,10,10). c(6,10,10). c(7,10,10). c(8,10,10). c(9,10,10). c(10,10,11). c(11,10,11). c(12,10,11).
> c(1,11,12). c(2,11,12). c(3,11,12). c(4,11,12). c(5,11,12). c(6,11,12). c(7,11,11). c(8,11,11). c(9,11,11). c(10,11,11). c(11,11,11). c(12,11,11).
> c(1,12,12). c(2,12,12). c(3,12,12). c(4,12,12). c(5,12,12). c(6,12,12). c(7,12,11). c(8,12,11). c(9,12,11). c(10,12,11). c(11,12,11). c(12,12,11).
> EOF
clingo version 5.1.0
Reading from plant.lp ...
Solving...
Answer: 1
c(1,1,1) c(2,1,1) c(3,1,1) c(4,1,1) c(5,1,1) c(6,1,2) c(7,1,3) c(8,1,3) c(9,1,3) c(10,1,3) c(11,1,4) c(12,1,4) c(1,2,1) c(2,2,1) c(3,2,1) c(4,2,1) c(5,2,1) c(6,2,2) c(7,2,3) c(8,2,3) c(9,2,3) c(10,2,3) c(11,2,4) c(12,2,4) c(1,3,1) c(2,3,1) c(3,3,1) c(4,3,1) c(5,3,1) c(6,3,2) c(7,3,2) c(8,3,2) c(9,3,2) c(10,3,4) c(11,3,4) c(12,3,4) c(1,4,5) c(2,4,5) c(3,4,5) c(4,4,1) c(5,4,6) c(6,4,6) c(7,4,6) c(8,4,7) c(9,4,2) c(10,4,7) c(11,4,8) c(12,4,8) c(1,5,5) c(2,5,5) c(3,5,1) c(4,5,1) c(5,5,6) c(6,5,6) c(7,5,6) c(8,5,7) c(9,5,2) c(10,5,7) c(11,5,8) c(12,5,8) c(1,6,5) c(2,6,5) c(3,6,6) c(4,6,6) c(5,6,6) c(6,6,6) c(7,6,6) c(8,6,7) c(9,6,7) c(10,6,7) c(11,6,8) c(12,6,8) c(1,7,5) c(2,7,5) c(3,7,5) c(4,7,6) c(5,7,9) c(6,7,10) c(7,7,6) c(8,7,6) c(9,7,7) c(10,7,8) c(11,7,8) c(12,7,8) c(1,8,9) c(2,8,9) c(3,8,5) c(4,8,9) c(5,8,9) c(6,8,10) c(7,8,10) c(8,8,10) c(9,8,10) c(10,8,11) c(11,8,8) c(12,8,8) c(1,9,9) c(2,9,9) c(3,9,9) c(4,9,9) c(5,9,9) c(6,9,10) c(7,9,10) c(8,9,10) c(9,9,10) c(10,9,11) c(11,9,8) c(12,9,11) c(1,10,12) c(2,10,12) c(3,10,10) c(4,10,10) c(5,10,10) c(6,10,10) c(7,10,10) c(8,10,10) c(9,10,10) c(10,10,11) c(11,10,11) c(12,10,11) c(1,11,12) c(2,11,12) c(3,11,12) c(4,11,12) c(5,11,12) c(6,11,12) c(7,11,11) c(8,11,11) c(9,11,11) c(10,11,11) c(11,11,11) c(12,11,11) c(1,12,12) c(2,12,12) c(3,12,12) c(4,12,12) c(5,12,12) c(6,12,12) c(7,12,11) c(8,12,11) c(9,12,11) c(10,12,11) c(11,12,11) c(12,12,11) t(1,7) t(1,9) t(2,3) t(2,11) t(3,5) t(3,8) t(4,10) t(4,12) t(5,5) t(5,8) t(6,2) t(6,10) t(7,4) t(7,12) t(8,2) t(8,6) t(9,4) t(9,11) t(10,1) t(10,6) t(11,3) t(11,9) t(12,1) t(12,7)
SATISFIABLE

Models       : 1+
Calls        : 1
Time         : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time     : 0.000s

Щоб полегшити роботу з форматом введення / виводу, ось програми Python для перетворення з та у формат, заданий у виклику.

Вхідні дані

import sys
print(' '.join("c({},{},{}).".format(x + 1, y + 1, ord(cell) - ord('a') + 1) for y, row in enumerate(sys.stdin.read().splitlines()) for x, cell in enumerate(row)))

Вихідні дані

import re
import sys
for line in sys.stdin:
    c = {(int(x), int(y)): int(z) for x, y, z in re.findall(r'\bc\((\d+),(\d+),(\d+)\)', line)}
    if c:
        t = {(int(x), int(y)) for x, y in re.findall(r'\bt\((\d+),(\d+)\)', line)}
        n, n = max(c)
        for y in range(1, n + 1):
            print(''.join(chr(ord('aA'[(x, y) in t]) + c[x, y] - 1) for x in range(1, n + 1)))
        print()

Схоже, нам потрібен більший тестовий випадок. До речі, ви б виграли версію гольфу в цьому питанні - просто потрібні дві зміни, що змінюються на 1.
Дейв

Офіційний термін - 18 мілісекунд на 12х12, прошу вибачення. 1 друк символів, ось проблема з абревіатурами.
isaacg

Ми в солінні, можливо, ви можете допомогти. Чи можете ви придумати будь-який спосіб генерувати нетривіальні більші екземпляри головоломки?
isaacg
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.