Мирні співіснуючі армії


15

У грі в шахи є фігура під назвою королева, яка може напасти на будь-яку іншу частину, що знаходиться на тому ж рядку, стовпчику або діагоналі. У шахах зазвичай є дві сторони, чорна і біла, причому кожен шматок належить одній із команд. Шматки можуть не атакувати шматки, належать одній команді.

Ваша мета - виявити найбільші мирні співіснуючі армії для квадратної дошки. Це найбільша кількість чорно-білих маток, які можуть вміститися на дошці, так що жодна дві королеви не можуть атакувати одна одну, а кількість чорних королев дорівнює кількості білих королев.

Ви отримаєте як вхід бічну довжину квадратної дошки і має вивести кількість розмірів найбільшої мирної співіснуючої армії, яка може вміститися на цій дошці.

Це тому застосовуються стандартні правила для тегу.

OEIS A250000

Ці тестові справи охоплюють усі відомі відповіді. Ваше рішення має бути узагальненою відповіддю, яка, враховуючи достатню обчислювальну потужність і час, може обчислити рішення для будь-якого вхідного значення.

1: 0
2: 0
3: 1
4: 2
5: 4
6: 5
7: 7
8: 9
9: 12
10: 14
11: 17
12: 21
13: 24

Читаючи посилання OEIS, я не впевнений, що відомі рішення для довільної довжини сторони.
Келлі Лоудер

5
@KellyLowder Ви завжди можете це жорстоко змусити!
musicman523

2
@ musicman523, lol щось на зразок 3 ^ (6 ^ 2) або 10 ^ 17 можливих станів для дошки 6x6.
Келлі Лоудер

5
@KellyLowder Я не сказав, що це буде швидко: P
musicman523

Обрізка пришвидшить справи.
CalculatorFeline

Відповіді:


8

C, 476 байт, DFS ітераційні білі королеви, O (2 n 2 )

#define R return
#define Z(q)for(j=q;j<I;j++)
#define Q(q)memset(q,0,4*J);
#define U(q)S(w[k]/I q j,w[k]%I+j)
int*c,*w,*Y,j,k,r,I,J,m;T(i,j){R i*I+j;}S(x,y){x>=0&&x<I&&y>=0&&y<I?Y[T(x,y)]=1:0;}g(l){int i;if(l==m){Q(Y)for(k=m;k--;){Z(0)Y[T(w[k]/I,j)]=Y[T(j,w[k]%I)]=1;Z(-I)U(+),U(-);}for(r=k=J;k--;)r-=Y[k];R r>=m;}for(i=!l?0:w[l-1]+1;i<J;i++){if(!c[i]){c[i]=1;w[l]=i;if(g(l+1))R 1;c[i]=0;}}R 0;}f(s){I=s;J=I*I;int C[J],W[J],y[J];c=C;w=W;Y=y;for(m=1;;m++){Q(c)if(!g(0))R m-1;}}

518 байт, DFS з обрізкою, O (2 n )

#define R return
#define Z(q)for(j=q;j<I;j++)
#define Q(q)memset(q,0,4*J);
#define V(Q)t=Q;if(!Y[t]){G-=Y[t]=1;b[B++]=t;}
#define F(q)if(S(x q j,y+j)){V((x q j)*I+y+j)}
int*c,*w,*Y,j,k,r,I,J,m;S(x,y){R x>=0&&x<I&&y>=0&&y<I;}D(l,H){int i,b[J],B,t,x,y,G;if(l==m)R 1;for(i=!l?0:w[l-1]+1;i<J;i++){if(!c[i]){c[i]=1;w[l]=i;x=i/I;y=i%I;G=H;Z(B=0){V(x*I+j)V(j*I+y)}Z(-I){F(+)F(-)}if(G>=m&&D(l+1,G))R 1;for(j=B;j--;)Y[b[j]]=0;c[i]=0;}}R 0;}f(s){I=s;J=I*I;int C[J],W[J],y[J];c=C;w=W;Y=y;for(m=1;;m++){Q(c)Q(Y)if(!D(0,J))R m-1;}}

577 байт, DFS ітераційні білі та чорні королеви, O (?)

#define R return
#define U(V,r,q)S(V,r[i]/I q j,r[i]%I+j)
#define W(q)for(j=q;j<I;j++)
#define Z(r,q,t,v)for(i=0;i<r;i++){t[q[i]]=1;W(0)v[T(q[i]/I,j)]=v[T(j,q[i]%I)]=1;W(-I)U(v,q,+),U(v,q,-);};
#define P(K,L,M)memcpy(v,K,4*J);for(i=0;i<J;i++)if(!v[i]){L[M++]=i;if(g(E,N,!C))R 1;M--;};
int*w,*b,m,I,J;T(i,j){R i*I+j;}Q(int*q){memset(q,0,4*J);}S(V,x,y)int*V;{x>=0&&x<I&&y>=0&&y<I?V[T(x,y)]=1:0;}g(E,N,C){int i,j,v[J],X[J],Y[J];if(E==m&&N==m)R 1;Q(X);Q(Y);Z(E,w,X,Y)Z(N,b,Y,X)if(C){P(Y,b,N)}else{P(X,w,E)}R 0;}f(q){I=q,J=I*I;int W[J],B[J];w=W,b=B;for(m=1;;m++)if(!g(0,0,0))R m-1;}

В основному, код повторює можливості білої королеви і перевіряє, чи можна було розмістити чорну королеву.

Довідкова таблиця швидкості (в секундах):

+---+----------------------+---------------------+-----------------+--------+
| n |      DFS w & b       |        DFS w        |  DFS w/ pruning | Clingo |
+---+----------------------+---------------------+-----------------+--------+
| 3 |                 0.00 |                0.00 |            0.00 |   0.01 |
| 4 |                 0.00 |                0.00 |            0.00 |   0.02 |
| 5 |                 0.47 |                0.16 |            0.00 |   0.04 |
| 6 |                20.62 |                1.14 |            0.00 |   0.60 |
| 7 |              1125.07 |              397.88 |            0.63 |  18.14 |
| 8 |                      |                     |            1.28 | 979.35 |
| 9 |                      |                     |           23.13 |        |
+---+----------------------+---------------------+-----------------+--------+

2

Клінго , 90 байт

{q(1..n,1..n)}.a(X+(-I;0;I),Y+(0;I)):-q(X,Y),I=-n..n.:~K={q(X,Y)},{a(1..n,1..n)}n*n-K.[-K]

Демо

$ clingo peaceable.lp -cn=6
clingo version 5.1.0
Reading from peaceable.lp
Solving...
Answer: 1

Optimization: 0
Answer: 2
q(6,1) a(7,1) a(7,2) a(8,1) a(8,3) a(9,1) a(9,4) a(10,1) a(10,5) a(11,1) a(11,6) a(12,1) a(6,1) a(6,2) a(6,3) a(6,4) a(6,5) a(6,6) a(5,1) a(5,2) a(4,1) a(4,3) a(3,1) a(3,4) a(2,1) a(2,5) a(1,1) a(1,6) a(0,1) a(7,0) a(8,-1) a(9,-2) a(10,-3) a(11,-4) a(12,-5) a(6,-4) a(6,-3) a(6,-2) a(6,-1) a(6,0) a(5,0) a(4,-1) a(0,7) a(1,-4) a(2,-3) a(3,-2) a(6,-5) a(6,7) a(0,-5) a(12,7)
Optimization: -1
Answer: 3
q(1,6) q(6,1) a(7,1) a(7,2) a(7,6) a(8,1) a(8,3) a(9,1) a(9,4) a(10,1) a(10,5) a(11,1) a(11,6) a(12,1) a(6,1) a(6,2) a(6,3) a(6,4) a(6,5) a(6,6) a(5,1) a(5,2) a(5,6) a(4,1) a(4,3) a(4,6) a(3,1) a(3,4) a(3,6) a(2,1) a(2,5) a(2,6) a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(0,1) a(0,5) a(0,6) a(-1,4) a(-1,6) a(-2,3) a(-2,6) a(-3,2) a(-3,6) a(-4,1) a(-4,6) a(-5,6) a(7,0) a(8,-1) a(9,-2) a(10,-3) a(11,-4) a(12,-5) a(6,-4) a(6,-3) a(6,-2) a(6,-1) a(6,0) a(5,0) a(4,-1) a(0,7) a(1,7) a(2,7) a(-1,8) a(1,8) a(3,8) a(-2,9) a(1,9) a(-3,10) a(1,10) a(-4,11) a(1,11) a(-5,12) a(1,-4) a(1,0) a(2,-3) a(3,-2) a(6,-5) a(6,7) a(4,9) a(5,10) a(6,11) a(1,12) a(-5,0) a(0,-5) a(7,12) a(12,7)
Optimization: -2
Answer: 4
q(1,6) q(6,1) q(6,6) a(7,1) a(7,2) a(7,5) a(7,6) a(8,1) a(8,3) a(8,4) a(8,6) a(9,1) a(9,3) a(9,4) a(9,6) a(10,1) a(10,2) a(10,5) a(10,6) a(11,1) a(11,6) a(12,1) a(12,6) a(6,1) a(6,2) a(6,3) a(6,4) a(6,5) a(6,6) a(5,1) a(5,2) a(5,5) a(5,6) a(4,1) a(4,3) a(4,4) a(4,6) a(3,1) a(3,3) a(3,4) a(3,6) a(2,1) a(2,2) a(2,5) a(2,6) a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(0,1) a(0,5) a(0,6) a(-1,4) a(-1,6) a(-2,3) a(-2,6) a(-3,2) a(-3,6) a(-4,1) a(-4,6) a(-5,6) a(7,0) a(8,-1) a(9,-2) a(10,-3) a(11,-4) a(12,-5) a(12,0) a(6,-4) a(6,-3) a(6,-2) a(6,-1) a(6,0) a(5,0) a(4,-1) a(0,7) a(1,7) a(2,7) a(5,7) a(-1,8) a(1,8) a(3,8) a(4,8) a(-2,9) a(1,9) a(3,9) a(-3,10) a(1,10) a(2,10) a(-4,11) a(1,11) a(-5,12) a(0,12) a(1,-4) a(1,0) a(2,-3) a(3,-2) a(6,-5) a(6,7) a(6,8) a(4,9) a(6,9) a(5,10) a(6,10) a(6,11) a(1,12) a(6,12) a(-5,0) a(0,-5) a(0,0) a(7,7) a(8,8) a(9,9) a(10,10) a(11,11) a(7,12) a(12,7) a(12,12)
Optimization: -3
Answer: 5
q(1,1) q(1,6) q(6,1) q(6,6) a(7,1) a(7,2) a(7,5) a(7,6) a(8,1) a(8,3) a(8,4) a(8,6) a(9,1) a(9,3) a(9,4) a(9,6) a(10,1) a(10,2) a(10,5) a(10,6) a(11,1) a(11,6) a(12,1) a(12,6) a(6,1) a(6,2) a(6,3) a(6,4) a(6,5) a(6,6) a(5,1) a(5,2) a(5,5) a(5,6) a(4,1) a(4,3) a(4,4) a(4,6) a(3,1) a(3,3) a(3,4) a(3,6) a(2,1) a(2,2) a(2,5) a(2,6) a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(0,1) a(0,2) a(0,5) a(0,6) a(-1,1) a(-1,3) a(-1,4) a(-1,6) a(-2,1) a(-2,3) a(-2,4) a(-2,6) a(-3,1) a(-3,2) a(-3,5) a(-3,6) a(-4,1) a(-4,6) a(-5,1) a(-5,6) a(7,-5) a(7,0) a(8,-1) a(9,-2) a(10,-3) a(11,-4) a(12,-5) a(12,0) a(6,-4) a(6,-3) a(6,-2) a(6,-1) a(6,0) a(5,-3) a(5,0) a(4,-2) a(4,-1) a(3,-1) a(2,0) a(0,7) a(1,7) a(2,7) a(5,7) a(-1,8) a(1,8) a(3,8) a(4,8) a(-2,9) a(1,9) a(3,9) a(-3,10) a(1,10) a(2,10) a(-4,11) a(1,11) a(-5,7) a(-5,12) a(0,12) a(1,-5) a(1,-4) a(1,-3) a(1,-2) a(1,-1) a(1,0) a(2,-3) a(3,-2) a(6,-5) a(6,7) a(6,8) a(4,9) a(6,9) a(5,10) a(6,10) a(6,11) a(1,12) a(6,12) a(-5,-5) a(-5,0) a(-4,-4) a(-3,-3) a(-2,-2) a(-1,-1) a(0,-5) a(0,0) a(7,7) a(8,8) a(9,9) a(10,10) a(11,11) a(7,12) a(12,7) a(12,12)
Optimization: -4
Answer: 6
q(1,2) q(1,3) q(2,2) q(2,3) q(2,6) a(7,1) a(7,2) a(7,3) a(7,6) a(8,2) a(8,3) a(8,6) a(6,2) a(6,3) a(6,6) a(5,2) a(5,3) a(5,5) a(5,6) a(4,1) a(4,2) a(4,3) a(4,4) a(4,5) a(4,6) a(3,1) a(3,2) a(3,3) a(3,4) a(3,5) a(3,6) a(2,1) a(2,2) a(2,3) a(2,4) a(2,5) a(2,6) a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(0,1) a(0,2) a(0,3) a(0,4) a(0,5) a(0,6) a(-1,1) a(-1,2) a(-1,3) a(-1,4) a(-1,5) a(-1,6) a(-2,2) a(-2,3) a(-2,5) a(-2,6) a(-3,1) a(-3,2) a(-3,3) a(-3,6) a(-4,2) a(-4,3) a(-4,6) a(-5,2) a(-5,3) a(7,-4) a(7,-3) a(7,-2) a(8,-4) a(8,-3) a(8,0) a(6,-3) a(6,-2) a(6,-1) a(5,-2) a(5,-1) a(5,0) a(4,-1) a(4,0) a(3,0) a(2,0) a(1,7) a(2,7) a(3,7) a(5,7) a(0,8) a(1,8) a(2,8) a(4,8) a(-2,7) a(-1,9) a(1,9) a(2,9) a(-3,7) a(-3,8) a(-2,10) a(2,10) a(-4,7) a(-4,8) a(-4,9) a(-3,11) a(-5,8) a(-5,9) a(-4,12) a(1,-4) a(1,-3) a(1,-2) a(1,-1) a(1,0) a(2,-4) a(2,-3) a(2,-2) a(2,-1) a(6,7) a(6,8) a(5,9) a(6,10) a(2,11) a(2,12) a(-5,-4) a(-5,-3) a(-4,-4) a(-4,-3) a(-4,-2) a(-4,0) a(-3,-3) a(-3,-2) a(-3,-1) a(-2,-2) a(-2,-1) a(-2,0) a(-1,-1) a(-1,0) a(0,0) a(7,7) a(7,8) a(8,8) a(7,9) a(8,9) a(7,11) a(8,12)
Optimization: -5
OPTIMUM FOUND

Models       : 6
  Optimum    : yes
Optimization : -5
Calls        : 1
Time         : 0.733s (Solving: 0.71s 1st Model: 0.00s Unsat: 0.71s)
CPU Time     : 0.730s

Ви хочете написати трохи пояснення?
Кейу Ган

2

Пітон 2 | 325 284 217 байт

Спробуйте в Інтернеті!

from itertools import*
N=input()
r=range(N*N)
for n in r:
 g=r
 for s in combinations(g,n):
    for p in s:g=filter(lambda q:all([abs(q%N-p%N)!=abs(q/N-p/N),q%N!=p%N,q/N!=p/N]),g)
    if len(g)>=n:break
    g=r
 else:exit(n-1)

Редагувати: Замінено кортежі цілими числами в g та інші тривіальні зміни.

Edit2: Байт до 217 завдяки musicman523 та CalculatorFeline !

Як це працює

Програма повторює всі можливі позиції nкоролеви і відфільтровує неспокійні точки, gвикликані положенням королеви. Якщо решта очок більше, ніж nтоді, це означає, що nкоролеві армії можна спокійно триматися. Якщо для наступного значення nмирної ситуації не знайдено, програма виходить із кодом виходу:, n-1що є відповіддю. Словом, це груба сила

Програму можна зробити швидше, змінивши останні два рядки на

for n in range(N**2):
    if not z(n,N):print n-1;break

2
Порада: 1 пробіл і 1 вкладка - це різні рівні відступів у Python 2. Також ви можете from module import*імпортувати все з модуля та зберігати байти.
CalculatorFeline


1

Haskell , 169 156 153 152 байт

k!(a:b)=k!b++[a:c|c<-(k-1)!b]
k!x=[x|k==0]
q&l|p<-q![[x,y,x-y,x+y]|x<-l,y<-l]=or[all and$zipWith(/=)<$>b<*>w|b<-p,w<-p]
g n=last$filter(&[1..n])[0..n*n]

Визначає функцію g, може бути надалі гольф. Спробуйте в Інтернеті! У TIO, коли компілюється -O2, це займає приблизно 36 секунд протягом n = 4, а час - на n = 5 . Часова складність повинна бути O (n 2 4 n 2 ) .

Пояснення

Ми повторюємо можливі значення для кількості маток ( q ). Для кожного q ми генеруємо всі пари підмножини розміру - q [1..n] 2 , один набір чорних королевок ( b ) та одну з білих королеви ( w ). Потім кожен елемент b перевіряється проти кожного елемента w, щоб побачити, чи поділяють вони рядки, стовпці, діагоналі чи антидіагоналі. Це також стосується двох частин, що мають однакову координату. Найбільше значення q, яке допускає мирну конфігурацію, є кінцевим значенням.

Перші два рядки програми визначають функцію !, яка обчислює довжину - kпослідовності списку x. Реалізація здійснюється за допомогою базової рекурсії: або вибирайте перший елемент, який буде в наборі, або ні, і повторюйте до хвоста, зменшуючи kпри необхідності. Потім порожній список або досягнуте, перевірте це k==0.

k!(a:b)=       -- ! on integer k and list with head a and tail b is
 k!b++         -- the concatenation of k!b and
 [a:c|         -- the list of lists a:c where
  c<-(k-1)!b]  -- c is drawn from (k-1)!b.
k!x=           -- If x doesn't have the form a:b (which means that it's empty),
 [x|           -- the result is a list containing x
  k==0]        -- but only if k==0.

Друга допоміжна функція &приймає число q(кількість маток з обох сторін) та список l(x-координати дошки, також використовувані як y-координати), і повертає булеве значення, що вказує, чи існує мирна конфігурація. Спочатку обчислюємо p, список довжини - qпослідовності списку значень [x,y,x-y,x+y], де xі yдіапазон l. Вони являють собою рядки, стовпчики, діагоналі та антидіагоналі квадрата (x,y)на дошці.

q&l               -- & on inputs q and l:
 |p<-             -- define p as
  q!              -- the q-subsequences of
  [[x,y,x-y,x+y]  -- the list of these 4-lists
   |x<-l,y<-l]    -- where x and y are drawn independently from l.

Далі ми маємо результат q&l. Ми намалюємо дві послідовності bта wз p, з’єднаємо 4-х списків їх разом усіма можливими способами та перевіряємо, чи завжди вони різняться у всіх 4 координатах. Якщо якийсь вибір bі wпризведе до неприємного результату, ми повернемось True.

=or            -- Does the following list contain a True:
 [all and$     -- every list contains only truthy values
  zipWith(/=)  -- if we zip with inequality
  <$>b<*>w     -- all elements of b and w in all possible ways,
 |b<-p,w<-p]   -- where b and w are drawn independently from p.

Останній рядок - основна функція. З огляду на nце, він просто знаходить найбільшу можливу цінність, qдля якої q&[1..n]це правда.

g n=              -- g on input n is
 last$            -- the last of
 filter(&[1..n])  -- those values q for which q&[1..n] is true
 [0..n*n]         -- in this list.
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.