Найдовший шлях гіперкубів


18

Виклик

Вам надаються два чітко розрядні рядки однакової довжини. (Наприклад, 000і 111.) Ваша мета - знайти шлях від одного до іншого таким, що:

  • На кожному кроці, ви зміните тільки один біт (ви можете перейти від 000будь-якої з 001, 010, 100).
  • Ви не можете двічі відвідати один і той же бітовий рядок.
  • Шлях, як можна довше, за цих обмежень.

Наприклад, переходячи 000до 111, ми можемо взяти шлях

000, 001, 011, 010, 110, 100, 101, 111

який відвідує всі 8 бітових рядків довжиною 3, тому він повинен бути найдовшим.

Правила

  • Застосовуються стандартні лазівки.
  • Ви можете приймати дані як два рядки нулів і одиниць, або як два масиви нулів і одиниць, або як два масиви булевих значень.
  • Ви не можете сприймати дані як два цілих числа з правильним бінарним поданням (запис 000і 111як, 0і 7не є дійсним).
  • Якщо ви хочете, ви можете взяти довжину бітових рядків як вхідні.
  • Вашій програмі дозволено виводити шлях шляхом друку бітових рядків, відвіданих одна за одною, або шляхом повернення масиву розвіданих рядків бітів (кожен у тому ж форматі, що і вхідний).
  • Ваш вихід повинен містити початок і кінець шляху (які є вашими входами).
  • Це , найкоротший код у байтах виграє.

Приклади

0 1 -> 0, 1
10 01 -> 10, 00, 01 or 10, 11, 01
000 111 -> any of the following:

   000, 100, 110, 010, 011, 001, 101, 111

   000, 100, 101, 001, 011, 010, 110, 111

   000, 010, 110, 100, 101, 001, 011, 111

   000, 010, 011, 001, 101, 100, 110, 111

   000, 001, 101, 100, 110, 010, 011, 111

   000, 001, 011, 010, 110, 100, 101, 111

1001 1100 -> 1001, 0001, 0000, 0010, 0011, 0111, 0101, 0100, 0110, 1110, 1010, 1011, 1111, 1101, 1100 (other paths exist)

1
Чи можемо ми також приймати булеві значення замість одиниць та нулів?
flawr

@flawr Звичайно, це добре.
Міша Лавров

Чи можемо ми припустити, що ми не отримаємо двох рівних рядків бітів (або що ми можемо зробити що-небудь, якщо так)?
Джонатан Аллан

1
@JonathanAllan Так, припустимо, що бітові рядки не рівні.
Міша Лавров

Відповіді:


6

Лушпиння , 27 26 24 байт

→foΛεẊδṁ≠ÖLm↓≠⁰←ġ→PΠmṠe¬

Груба сила, так дуже повільно. Спробуйте в Інтернеті!

Пояснення

Хуск читається природно справа наліво.

←ġ→PΠmṠe¬  Hypercube sequences ending in second input, say y=[1,1,0]
     mṠe¬  Pair each element with its negation: [[0,1],[0,1],[1,0]]
    Π      Cartesian product: [[0,0,1],[1,0,1],..,[1,1,0]]
   P       Permutations.
 ġ→        Group by last element
←          and take first group.
           The permutations are ordered so that those with last element y come first,
           so they are grouped together and returned here.

ÖLm↓≠⁰  Find first input.
  m     For each permutation,
   ↓≠⁰  drop all elements before the first input.
ÖL      Sort by length.

foΛεẊδṁ≠  Check path condition.
fo        Keep those lists that satisfy:
    Ẋ      For each adjacent pair (e.g. [0,1,0] and [1,1,0]),
      ṁ    take sum of
       ≠   absolute differences
     δ     of corresponding elements: 1+0+0 gives 1.
  Λε       Each value is at most 1.

→  Finally, return last element (which has greatest length).

4

Математика, 108 байт

a=#~FromDigits~2+1&;Last@PadLeft[IntegerDigits[#-1,2]&/@FindPath[HypercubeGraph@Length@#,a@#,a@#2,∞,All]]&

Вхід:

[{0, 0, 0, 0}, {1, 1, 1, 1}]

Вихід:

{{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 1}, {0, 0, 1, 0}, {0, 1, 1, 0},
 {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}, {1, 0, 0, 1}, {1, 0, 0, 0},
 {1, 1, 0, 0}, {1, 1, 1, 0}, {1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 1, 1}}

3

Математика, 175 байт

Приємне перше запитання!

(m=#;n=#2;Last@SortBy[(S=Select)[S[Rest@Flatten[Permutations/@Subsets[Tuples[{0,1},(L=Length)@m]],1],First@#==m&&Last@#==n&],Union[EditDistance@@@Partition[#,2,1]]=={1}&],L])&   


Вхідні дані

[{0, 0, 0}, {1, 1, 1}]


3

Haskell , 212 207 байт

Це, мабуть, занадто довго, але він, нарешті, працює зараз. (Дякуємо @Lynn за декартовий трюк продукту !) Thansk @nimi за -5 байт!

import Data.List
b%l=[l++[x|b/=last l,x`notElem`l,1==sum[1|(u,v)<-x`zip`last l,u/=v]]|x<-mapM id$[0>1..]<$b]
b!a|f<-nub.concat.((b%)<$>)=snd$maximum$map(length>>=(,))$filter((==b).last)$until(f>>=(==))f[[a]]

Спробуйте в Інтернеті!

Пояснення:

b%l -- helper function:
    -- given a path l (that should end in b) this generates all possible extensions
    -- of l (if not possible also l itself) 
            x<-mapM id$[0>1..]<$b -- generate all possible vertices of the hypercube
             -- and check the criteria
           b/=last l,x`notElem`l,1==sum[1|(u,v)<-x`zip`last l,u/=v] 
             -- extend if possible
    [l++[x|  ...                                                   ]| ... ]
b!a| -- actual function: 
     -- first define a helper function:
    f<-nub.concat.((b%)<$>)
     -- begin with the vertex a and apply the function from above repeatedly
     -- until you cannot make the path any longer without violating the
     -- criteria 
                                                                             until(f>>=(==))f[[a]]
     -- only take the paths that actually end in b          
                                                          filter((==b).last)$
     -- and find the one with the maximum length    
                           =snd$maximum$map(length>>=(,))$    

x<-mapM id$[1>0,1<0]<$b
німі

... вам потрібно [True,False]? Якщо [False,True]також працює, можна використовувати [0>1..].
німі

О, чудово, дякую, я не знав, що Boolце Enum, і я забув, що <$це доступно (вперше спробував, *>що не є в Prelude)!
flawr

3

Математика 116 114 байт

З декількома байтами, збереженими завдяки Міші Лаврову.

Last@FindPath[Graph[Rule@@@Cases[Tuples[Tuples[{0,1},{l=Length@#}],{2}],x_/;Count[Plus@@x,1]==1]],##,{1,2^l},Alll]&

Вхід (8 розмірів)

[{1,0,0,1,0,0,0,1},{1,1,0,0,0,0,1,1}]//AbsoluteTiming

Вихід (довжина = 254, через 1,82 секунди)

{1.82393, {{1, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0,0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 1, 0}, {0, 0, 0, 0,1, 1, 1,0}, {0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 0, 0,1, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1,0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0}, {0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 0, 1, 1, 1}, {0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 1, 1, 1, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 0}, {0, 0, 0, 1, 1, 0, 1, 0}, {0, 0, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 1,1, 1, 1, 1}, {0, 0, 0, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 0,0, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 1, 1, 1}, {0, 0, 1, 0,0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 1}, {0, 0, 1, 0,1, 0, 1, 1}, {0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 1}, {0, 0, 1, 0, 1, 1, 0, 1}, {0, 0, 1, 1,1, 1, 0, 1}, {0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 1, 1,0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1,1}, {0, 0, 1, 1, 1, 1, 1, 1}, {0, 0, 1, 1, 1, 0, 1, 1}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 1,1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 1, 0}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 0, 1, 0, 0}, {0, 1, 1, 1,0, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0,0, 0, 1, 1}, {0, 1, 0, 0, 0, 0, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 1}, {0, 1, 0, 0,1, 1, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 0}, {0, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 0, 0,1, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 1, 0}, {0, 1, 0, 0, 1, 1, 0,0}, {0, 1, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 0, 0, 0}, {0, 1, 0, 1,0, 0, 0, 0}, {0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 1, 1, 0}, {0, 1, 0, 1,0, 1, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 1, 1, 0, 1}, {0, 1, 0, 1, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 1}, {0, 1, 0, 1,1, 0, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 1}, {0, 1, 1, 1, 1, 1, 1, 1}, {0, 1, 1, 0, 1, 1, 1, 1}, {0, 1, 1, 0,0, 1, 1, 1}, {0, 1, 1, 0, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0,0, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}, {0, 1, 1, 0, 1, 1, 0, 1}, {0, 1, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 0,1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 1, 0}, {0, 1, 1, 0, 1, 0, 1, 1}, {0, 1, 1, 1, 1, 0, 1, 1}, {0, 1, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 1,0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 1, 1,0, 1, 0, 1}, {0, 1, 1, 1, 1, 1, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 0, 1, 0}, {0, 1, 1, 1,1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 1, 1,1, 1, 0, 0}, {1, 0, 0, 1, 1, 1, 0, 0}, {1, 0, 0, 0, 1, 1, 0, 0}, {1, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0,0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 1}, {1, 0, 0, 0,0, 1, 0, 1}, {1, 0, 0, 0, 1, 1, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 0, 0, 1, 0, 1, 0}, {1, 0, 0, 0,1, 0, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 0}, {1, 0, 0, 1, 1, 1, 1, 0}, {1, 0, 0, 1, 0, 1, 1, 0}, {1, 0, 0, 1,0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 1}, {1, 0, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1,0, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 0}, {1, 0, 1, 1,1, 0, 1, 0}, {1, 0, 1, 0, 1, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 1, 0,0, 0, 1, 1}, {1, 0, 1, 0, 0, 1, 1, 1}, {1, 0, 1, 0, 0, 1, 0, 1}, {1, 0, 1, 0, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 1, 0}, {1, 0, 1, 0,1, 1, 1, 0}, {1, 0, 1, 0, 1, 1, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 1, 0,1, 1, 1, 1}, {1, 0, 1, 0, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1,1, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 0, 0, 0}, {1, 0, 1, 1,0, 0, 1, 0}, {1, 0, 1, 1, 0, 1, 1, 0}, {1, 0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 1, 0, 1}, {1, 1, 0, 1,0, 1, 0, 1}, {1, 1, 0, 0, 0, 1, 0,1}, {1, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 1, 0}, {1, 1, 0, 0,0, 1, 1, 0}, {1, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0,1, 0, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 0, 1,0, 1, 1, 1}, {1, 1, 0, 1, 0, 0, 1, 1}, {1, 1, 0, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 1,0, 1, 1, 0}, {1, 1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 1, 1, 1, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 1}, {1, 1, 0, 1,1, 0, 1, 1}, {1, 1, 0, 1, 1, 0, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 1}, {1, 1, 0, 1, 1, 1, 0, 1}, {1, 1, 0, 0,1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 0, 1, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 0}, {1, 1, 1, 0,0, 0, 1, 0}, {1, 1, 1, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 0, 0}, {1, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 1, 0,1, 0, 0, 1}, {1, 1, 1, 0, 1, 0, 1, 1}, {1, 1, 1, 0, 1, 0, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0,0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 0}, {1, 1, 1, 1, 0, 0, 1, 0}, {1, 1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 1,0, 0, 0, 1}, {1, 1, 1, 1, 1, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 0}, {1, 1, 1, 1,1, 0, 1, 0}, {1, 1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 1,1, 0, 1, 1}, {1, 1, 1, 1, 0, 0, 1, 1}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 0, 1, 1}}}

Tuples[{0,1},{l=Length@#}],{2}]& генерує числа 0 ... 8 як двійкові списки.

Зовнішній Tuples...{2}виробляє всі впорядковані пари цих двійкових чисел.

Plus@@x підсумовує кожну з пар, генеруючи трійні 0, 1.

Cases....Count[Plus@@x, 1]==1 повертає всі суми, що містять єдиний 1. Вони виникають, коли два вихідних двійкових числа з’єднані ребром.

Rules з'єднує вершини графіка, кожна вершина є двійковим числом.

Graph створює графік, відповідний зазначеним вершинам і ребрам.

FindPath знаходить до 2 ^ n шляхів, що з'єднують вершину a з вершиною b, задані числа.

Last займає найдовший з цих шляхів.


Для трьох вимірів графік можна представити в площині, як показано тут:

графік плоский

Для входу, {0,0,0}, {1,1,1}виводиться наступне:

{{{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {0, 1, 0}, {1, 1, 0}, {1, 0, 0}, {1, 0, 1}, {1, 1, 1}}}

Цей шлях можна знайти у наведеному вище графіку.

Його також можна уявити як наступний шлях у 3-просторі, де кожній вершині відповідає точка {x,y,z}. {0,0,0} являє початок, а {1,1,1} являє собою "протилежну" точку в одиничному кубі.

Отже шлях розчину відповідає обходу ребер вздовж одиничного куба. У цьому випадку шлях є гамільтоніанським: він відвідує кожну вершину один раз (тобто без перетинів і вершин не опущено).

g4


Чи є проста причина, чому 2 ^ n шляхів від a до b є достатніми шляхами, щоб найдовший один із них був найдовшим загальним?
Міша Лавров

@Misha, Дуже гарне запитання.
DavidC

Ось один із способів подумати про це. Найдовший шлях, гамільтонів шлях, буде на один менший за кількість кутів. (Ми рахуємо кількість ребер на шляху.) Кількість кутів дорівнює 2 ^ n. Отже, максимальна довжина шляху була б 2 ^ n-1.
DavidC

Я погоджуюся, що максимальна довжина шляху завжди відвідує 2 ^ n вершин (якщо це гамільтонівські) або 2 ^ n-1 вершини (якщо гамільтонів шлях неможливий через паритет). Це відрізняється від мого запитання, яке полягає в тому, чому генерувати 2 ^ (n + 2) (я думаю, 2 ^ n було неправильним числом) різні шляхи (деякі з яких можуть бути дуже короткими) гарантують, що найдовшим з них буде найдовший з усіх різних шляхів.
Міша Лавров

Іншими словами, чому 2^(l+2)у вашому коді?
Міша Лавров

3

Haskell , 141 123 байт

c(a:b)=(1-a:b):map(a:)(c b)
c _=[]
q#z=[z]:[z:s|w<-c z,notElem w q,s<-(w:q)#w]
x!y=snd$maximum[(p*>x,p)|p<-[x]#x,last p==y]

Використовує списки цілих чисел. Спробуйте в Інтернеті!

Пояснення

Основна функція є !, а допоміжні функції - #і c. Дано список бітів, cдає всі можливі способи прогортання одного з них, наприклад [0,1,1] -> [[1,1,1],[0,0,1],[0,1,0]].

c(a:b)=        -- c on nonempty list with head a and tail b is
 (1-a:b):      -- the list with negated a tacked to b, then
 map(a:)(c b)  -- c applied recursively to b, with a tacked to each of the results.
c _=[]         -- c on empty list gives an empty list.

Функція #приймає список списків ("пам'ять") та список ("початковий бітстринг"). Він побудує всі шляхи гіперкубів, які починаються з початкового елемента, містять лише окремі бітстриги і не наступають на рядки в пам'яті.

q#z=            -- # on memory q and initial string z is
 [z]:           -- the singleton path [z], and
 [z:s|          -- z tacked to each path s, where
  w<-c z,       -- w is obtained by flipping a bit of z,
  notElem w q,  -- w is not in the memory, and
  s<-(w:q)#w]   -- s is a path starting from w that avoids w and all elements of q.

Основна функція !пов'язує все це разом. Я використовую тут трюк p*>x( xповторний length pраз) замість length p. Оскільки більш довгі повтори xприходять пізніше в природному упорядкуванні списків, maximumвибирає найдовший шлях в будь-якому випадку, оскільки перші координати пар порівнюються перед другими.

x!y=          -- ! on inputs x and y is
 snd$maximum  -- the second element of the maximal pair in
 [(p*>x,p)|   -- the list of pairs (p*>x,p), where
  p<-[x]#x,   -- p is a path starting from x that avoids stepping on x, and
  last p==y]  -- p ends in y.

2

Желе ,  25  27 байт

+2 байти, щоб виправити помилку в моєму гольфі :( сподіваюся, я знайду коротший спосіб.

ṫi¥³ḣi
L2ṗŒ!瀵ạ2\S€ỊẠ×LµÞṪ

Повна програма, що приймає бітові рядки, використовуючи 1і 2* як списки. Аргументи є fromі to. Програма друкує список таких самих списків.

* 0і 1може бути використаний натомість за рахунок байта (додавання між L2ṗта Œ!ç€...декрементом).

Спробуйте в Інтернеті!

Як?

оновлення ...

ṫi¥³ḣi - Link 1, getSlice: list of lists, bitstrings; list, toBitstring
   ³   - get 3rd command line argument (fromBitstring)
  ¥    - last two links as a dyad:
 i     -   index (of fromBitstring in bitstrings)
ṫ      -   tail (bitstrings) from (that) index
     i - index (of toBitstring in that result)
    ḣ  - head to (that) index

L2ṗŒ!瀵ạ2\S€ỊẠ×LµÞṪ - Main link: list, fromBitstring; list, toBitstring
L                    - length (of fromBitstring)
 2                   - literal two
  ṗ                  - Cartesian power (of implicit range(2)=[1,2] with L(fromBitstring))
                     - ...i.e. all unique bitstrings of the required length (using [1,2])
   Œ!                - all permutations (of that list)
     ç€              - call the last link (1) as a dyad (i.e. f(that, toBitstring))
       µ         µÞ  - sort by the monadic function:
         2\          -   2-wise reduce with:
        ạ            -     absolute difference
           S€        -   sum €ach
             Ị       -   insignificant (vectorises) (abs(z)<=1 - for our purposes it's really just used for z==1 since only positive integers are possible)
              Ạ      -   all truthy? (1 if so 0 otherwise)
                L    -   length
               ×     -   multiply
                   Ṫ - tail (the last one is one of the maximal results)
                     - implicit print

Як працює Jelly, для мене є таємницею, але введення [1,1]та отримання [2,2]результатів, [[1, 1], [2, 1], [1, 2], [2, 2]]коли я пробую це в Інтернеті, що не є дійсним шляхом.
Міша Лавров

Хм, я, мабуть, зробив щось не так - дивлячись ...
Джонатан Аллан

OK виправлено, повернувши один із моїх гольфів на 2 байти.
Джонатан Аллан
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.