Вступ
Ваше завдання - генерувати перші 1000 доданків у поданому представленні дробу з розрядним числом суми квадратного кореня 2 та квадратного кореня з 3.
Іншими словами, складіть саме такий список (але формат виводу є гнучким)
[2, 6, 1, 5, 7, 2, 4, 4, 1, 11, 68, 17, 1, 19, 5, 6, 1, 5, 3, 2, 1, 2, 3, 21, 1, 2, 1, 2, 2, 9, 8, 1, 1, 1, 1, 6, 2, 1, 4, 1, 1, 2, 3, 7, 1, 4, 1, 7, 1, 1, 4, 22, 1, 1, 3, 1, 2, 1, 1, 1, 7, 2, 7, 2, 1, 3, 14, 1, 4, 1, 1, 1, 15, 1, 91, 3, 1, 1, 1, 8, 6, 1, 1, 1, 1, 3, 1, 2, 58, 1, 8, 1, 5, 2, 5, 2, 1, 1, 7, 2, 3, 3, 22, 5, 3, 3, 1, 9, 1, 2, 2, 1, 7, 5, 2, 3, 10, 2, 3, 3, 4, 94, 211, 3, 2, 173, 2, 1, 2, 1, 14, 4, 1, 11, 6, 1, 4, 1, 1, 62330, 1, 17, 1, 5, 2, 5, 5, 1, 9, 3, 1, 2, 1, 5, 1, 1, 1, 11, 8, 5, 12, 3, 2, 1, 8, 6, 1, 3, 1, 3, 1, 2, 1, 78, 1, 3, 2, 442, 1, 7, 3, 1, 2, 3, 1, 3, 2, 9, 1, 6, 1, 2, 2, 2, 5, 2, 1, 1, 1, 6, 2, 3, 3, 2, 2, 5, 2, 2, 1, 2, 1, 1, 9, 4, 4, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 12, 1, 1, 1, 4, 2, 15, 1, 2, 1, 3, 2, 2, 3, 2, 1, 1, 13, 11, 1, 23, 1, 1, 1, 13, 4, 1, 11, 1, 1, 2, 3, 14, 1, 774, 1, 3, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 8, 1, 3, 10, 2, 7, 2, 2, 1, 1, 1, 2, 2, 1, 11, 1, 2, 5, 1, 4, 1, 4, 1, 16, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 22, 3, 1, 8, 1, 1, 1, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 3, 5, 1, 3, 1, 77, 1, 7, 1, 1, 1, 1, 2, 1, 1, 27, 16, 2, 1, 10, 1, 1, 5, 1, 6, 2, 1, 4, 14, 33, 1, 2, 1, 1, 1, 2, 1, 1, 1, 29, 2, 5, 3, 7, 1, 471, 1, 50, 5, 3, 1, 1, 3, 1, 3, 36, 15, 1, 29, 2, 1, 2, 9, 5, 1, 2, 1, 1, 1, 1, 2, 15, 1, 22, 1, 1, 2, 7, 1, 5, 9, 3, 1, 3, 2, 2, 1, 8, 3, 1, 2, 4, 1, 2, 6, 1, 6, 1, 1, 1, 1, 1, 5, 7, 64, 2, 1, 1, 1, 1, 120, 1, 4, 2, 7, 3, 5, 1, 1, 7, 1, 3, 2, 3, 13, 2, 2, 2, 1, 43, 2, 3, 3, 1, 2, 4, 14, 2, 2, 1, 22, 4, 2, 12, 1, 9, 2, 6, 10, 4, 9, 1, 2, 6, 1, 1, 1, 14, 1, 22, 1, 2, 1, 1, 1, 1, 118, 1, 16, 1, 1, 14, 2, 24, 1, 1, 2, 11, 1, 6, 2, 1, 2, 1, 1, 3, 6, 1, 2, 2, 7, 1, 12, 71, 3, 2, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 5, 5, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 2, 19, 1, 16, 2, 15, 1, 1, 3, 2, 3, 2, 4, 1, 3, 1, 1, 7, 1, 2, 2, 117, 2, 2, 8, 2, 1, 5, 1, 3, 12, 1, 10, 1, 4, 1, 1, 2, 1, 5, 2, 33, 1, 1, 1, 1, 1, 18, 1, 1, 1, 4, 236, 1, 11, 4, 1, 1, 11, 13, 1, 1, 5, 1, 3, 2, 2, 3, 3, 7, 1, 2, 8, 5, 14, 1, 1, 2, 6, 7, 1, 1, 6, 14, 22, 8, 38, 4, 6, 1, 1, 1, 1, 7, 1, 1, 20, 2, 28, 4, 1, 1, 4, 2, 2, 1, 1, 2, 3, 1, 13, 1, 2, 5, 1, 4, 1, 3, 1, 1, 2, 408, 1, 29, 1, 6, 67, 1, 6, 251, 1, 2, 1, 1, 1, 8, 13, 1, 1, 1, 15, 1, 16, 23, 12, 1, 3, 5, 20, 16, 4, 2, 1, 8, 1, 2, 2, 6, 1, 2, 4, 1, 9, 1, 7, 1, 1, 1, 64, 10, 1, 1, 2, 1, 8, 2, 1, 5, 4, 2, 5, 6, 7, 1, 2, 1, 2, 2, 1, 4, 11, 1, 1, 4, 1, 714, 6, 3, 10, 2, 1, 6, 36, 1, 1, 1, 1, 10, 2, 1, 1, 1, 3, 2, 1, 6, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 40, 1, 1, 1, 5, 1, 3, 24, 2, 1, 6, 2, 1, 1, 1, 7, 5, 2, 1, 2, 1, 6, 1, 1, 9, 1, 2, 7, 6, 2, 1, 1, 1, 2, 1, 12, 1, 20, 7, 3, 1, 10, 1, 8, 1, 3, 1, 1, 1, 1, 2, 1, 1, 6, 1, 2, 1, 5, 1, 1, 1, 5, 12, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 8, 2, 4, 1, 3, 1, 1, 1, 2, 1, 11, 3, 2, 1, 7, 18, 1, 1, 17, 1, 1, 7, 4, 6, 2, 5, 6, 4, 4, 2, 1, 6, 20, 1, 45, 5, 6, 1, 1, 3, 2, 3, 3, 19, 1, 1, 1, 1, 1, 1, 34, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 312, 2, 1, 1, 1, 3, 6, 6, 1, 2, 25, 14, 281, 4, 1, 37, 582, 3, 20, 2, 1, 1, 1, 2, 1, 3, 7, 8, 4, 1, 11, 2, 3, 183, 2, 23, 8, 72, 2, 2, 3, 8, 7, 1, 4, 1, 4, 1, 2, 2, 1, 2, 1, 8, 2, 4, 1, 2, 1, 2, 1, 1, 2, 1, 1, 10, 2, 1, 1, 5, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 2, 9]
Виклик
Наступне загальне введення до продовження дробу взято з виклику Спростити продовження дробу .
Продовжувані дроби - це вирази, які ітераційно описують дроби. Вони можуть бути представлені графічно:
Або їх можна представити у вигляді списку значень:
[a0, a1, a2, a3, ... an]
Це завдання полягає в тому, щоб з'ясувати , що продовжується частку значного мудрий суми sqrt(2)
і sqrt(3)
, цифра-навхрест сума визначається наступним чином ,
Візьміть цифри в десятковому зображенні sqrt(2)
та sqrt(3)
і отримайте суму цифр за цифрою:
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
Тоді збережіть лише останню цифру суми і складіть їх до десяткового подання реального числа
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
-> 2. 1 4 6 2 6 3 3 6 9 8 ...
Цифрова сума sqrt(2)
і sqrt(3)
, отже 2.1462633698...
, і коли вона виражається безперервним дробом, перші 1000 отриманих значень (тобто до ) є тими, що перераховані у вступному розділі.a0
a999
Технічні характеристики
Ви можете написати функцію або повну програму. Ніхто не повинен приймати матеріали. Іншими словами, функція або програма повинні працювати належним чином без входів. Не має значення, що робить функція чи програма, якщо надається не порожній вхід.
Вам слід вивести STDOUT. Тільки якщо ваша мова не підтримує вихід на STDOUT, ви повинні використовувати найближчий еквівалент вашої мови.
Вам не потрібно підтримувати STDERR в чистоті, і зупиняти програму помилково дозволено, доки необхідний вихід зроблений в STDOUT або його еквівалентах.
Ви можете надати вихід через будь-яку стандартну форму .
Це код-гольф , найменша кількість виграних байтів.
Як завжди, тут застосовуються лазівки за замовчуванням .
×⁺Ñ
, не працює. Як варіант×Ѳ$
.