Довільне перетворення бази [закрито]


10

Створіть процедуру, яка приймає масив блоків в одній числовій базовій системі та конвертує їх у масив блоків в іншій числовій базовій системі. І від, і до систем є довільними і їх слід сприймати як параметр. Вхідний масив може бути довільною довжиною (Якщо використовується мова, де довжини масиву не зберігаються з масивом, наприклад, С, параметр довжини повинен бути переданий функції).

Ось як це має працювати:

fromArray = [1, 1]
fromBase = 256
toBase = 16
result = convertBase(fromArray, fromBase, toBase);

Що слід повернути [0, 1, 0, 1]або можливо [1, 0, 1](провідні 0s необов’язкові, оскільки вони не змінюють значення відповіді).

Ось кілька тестових векторів:

  1. Вектор тестування особи

    fromArray = [1, 2, 3, 4]
    fromBase = 16
    toBase = 16
    result = [1, 2, 3, 4]
    
  2. Тривіальний тестовий вектор

    fromArray = [1, 0]
    fromBase = 10
    toBase = 100
    result = [10]
    
  3. Великий тестовий вектор

    fromArray = [41, 15, 156, 123, 254, 156, 141, 2, 24]
    fromBase = 256
    toBase = 16
    result = [2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
    
  4. Дійсно великий тестовий вектор

    fromArray = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    fromBase = 2
    toBase = 10
    result = [1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
    
  5. Нерівний базовий вектор

    fromArray = [41, 42, 43]
    fromBase = 256
    toBase = 36
    result = [1, 21, 29, 22, 3]
    

Інші критерії / правила:

  1. Усі цілі змінні повинні розміщуватися в стандартному цілому 32-бітному цілому цілому для всіх розумних вхідних діапазонів.

  2. Ви можете конвертувати в представництво посередника, якщо посередник - це не що інше, як масив із 32-бітових цілих підписаних чисел.

  3. Розраховуйте обробляти бази від 2 до 256. Немає потреби підтримувати більш високі бази, ніж це (але якщо ви хочете, будь-якими способами).

  4. Розраховуйте обробляти вхідні та вихідні розміри принаймні до 1000 елементів. Рішення, яке масштабує до 2 ^ 32-1 елементів, було б краще, але 1000 - просто чудово.

  5. Це не обов'язково про те, щоб мати найкоротший код, який відповідає цим правилам. Йдеться про наявність найчистішого та найелегантнішого коду.

Тепер це не зовсім тривіально, тому відповідь, що майже працює, може бути прийнята!


Чи означає №1, що ми не можемо використовувати тип bigint?
Кіт Рендалл

@Keith: Правильно. Лише 32 бітні цілі числа.
ircmaxell

Ви говорите "підписане ціле число", але приклади є лише для натуральних цілих чисел, тож: чи ми маємо обробляти негативи?
Вісімнадцять

@Eelvex: Я не бачу потреби в обробці негативів. Якщо обробляється мінус, це буде поза перетворювача.
ircmaxell

Вони завжди цілі бази?
Пітер Ольсон

Відповіді:


8

Пітон

# divides longnum src (in base src_base) by divisor
# returns a pair of (longnum dividend, remainder)
def divmod_long(src, src_base, divisor):
  dividend=[]
  remainder=0
  for d in src:
    (e, remainder) = divmod(d + remainder * src_base, divisor)
    if dividend or e: dividend += [e]
  return (dividend, remainder)

def convert(src, src_base, dst_base):
  result = []
  while src:
    (src, remainder) = divmod_long(src, src_base, dst_base)
    result = [remainder] + result
  return result

Дякую. Я шукав такий режим. Мені знадобилося певний час, щоб перетворити його на Javascript. Я, мабуть, трохи полюю його і пошта тут для задоволення.
Стівен Перелсон

5

Ось рішення Haskell

import Data.List
import Control.Monad

type Numeral = (Int, [Int])

swap              ::  (a,b) -> (b,a)
swap (x,y)        =   (y,x)

unfoldl           ::  (b -> Maybe (b,a)) -> b -> [a]
unfoldl f         =   reverse . unfoldr (fmap swap . f)

normalize         ::  Numeral -> Numeral
normalize (r,ds)  =   (r, dropWhile (==0) ds)

divModLongInt            ::  Numeral -> Int -> (Numeral,Int)
divModLongInt (r,dd) dv  =   let  divDigit c d = swap ((c*r+d) `divMod` dv)
                                  (remainder, quotient) = mapAccumR divDigit 0 (reverse dd)
                             in   (normalize (r,reverse quotient), remainder)

changeRadixLongInt       ::  Numeral -> Int -> Numeral
changeRadixLongInt n r'  =   (r', unfoldl produceDigit n)
  where  produceDigit  (_,[])   =  Nothing
         produceDigit  x        =  Just (divModLongInt x r')

changeRadix :: [Int] -> Int -> Int -> [Int]
changeRadix digits origBase newBase = snd $ changeRadixLongInt (origBase,digits) newBase

doLine line = let [(digits,rest0)] = reads line
                  [(origBase,rest1)] = reads rest0
                  [(newBase,rest2)] = reads rest1
              in show $ changeRadix digits origBase newBase

main = interact (unlines . map doLine . lines)

І запуск тестів з питання:

$ ./a.out 
[1,2,3,4] 16 16
[1,2,3,4]
[1,0] 10 100
[10]
[41, 15, 156, 123, 254, 156, 141, 2, 24] 256 16
[2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 2 10
[1,2,3,7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3]
[41, 42, 43] 256 36
[1,21,29,22,3]

Ух ти. Це круто! Тепер, якби тільки я міг це зрозуміти: -) ... (але це зараз моє завдання) ...
ircmaxell

5

R

Обробляє багато тисяч елементів * за менше хвилини.

addb <- function(v1,v2,b) {
    ml <- max(length(v1),length(v2))
    v1 <- c(rep(0, ml-length(v1)),v1)
    v2 <- c(rep(0, ml-length(v2)),v2)
    v1 = v1 + v2
    resm = v1%%b
    resd = c(floor(v1/b),0)
    while (any(resd != 0)) {
        v1 = c(0,resm) + resd
        resm = v1%%b
        resd = c(floor(v1/b),0)
    }
    while (v1[1] == 0) v1 = v1[-1]
    return(v1)
}

redb <- function(v,b) {
    return (addb(v,0,b))
}

mm = rbind(1)

mulmat <- function(fromb, tob, n) {
    if (dim(mm)[2] >= n) return(mm)
    if (n == 1) return(1)
    newr = addb(mulmat(fromb,tob,n-1) %*% rep(fromb-1,n-1), 1, tob)
    newm = mulmat(fromb,tob,n-1)
    while (is.null(dim(newm)) || dim(newm)[1] < length(newr)) newm = rbind(0,newm)
    mm <<-  cbind(newr, newm)
    return(mm)
}

dothelocomotion <- function(fromBase, toBase, v) {
    mm  <<- rbind(1)
    return(redb(mulmat(fromBase, toBase, length(v)) %*% v, toBase))
}

* для> 500 елементів ви повинні підвищити рівень рекурсії за замовчуванням або не скидати mmматрицюdothelocomotion()

Приклади:

v1 = c(41, 15, 156, 123, 254, 156, 141, 2, 24)
dothelocomotion(256,16,v1)
2  9  0 15  9 12  7 11 15 14  9 12  8 13  0  2  1  8

dothelocomotion(256,36,c(41,42,43))
1 21 29 22  3

dothelocomotion(2,10, rep(1,90))
1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3

3

Менш заплутана та швидша версія JavaScript:

function convert (number, src_base, dst_base)
{
    var res = [];
    var quotient;
    var remainder;

    while (number.length)
    {
        // divide successive powers of dst_base
        quotient = [];
        remainder = 0;
        var len = number.length;
        for (var i = 0 ; i != len ; i++)
        {
            var accumulator = number[i] + remainder * src_base;
            var digit = accumulator / dst_base | 0; // rounding faster than Math.floor
            remainder = accumulator % dst_base;
            if (quotient.length || digit) quotient.push(digit);
        }

        // the remainder of current division is the next rightmost digit
        res.unshift(remainder);

        // rinse and repeat with next power of dst_base
        number = quotient;
    }

    return res;
}

Час обчислення зростає як o (кількість цифр 2 ).
Не дуже ефективний для великої кількості.
Спеціалізовані версії кодування base64 використовують переваги базових співвідношень для прискорення обчислень.


роблячи роботу бога син
bryc

2

Javascript

Дякую Кіт Рендалл за відповідь Python. Я боровся з деталями свого рішення і закінчив копіювати вашу логіку. Якщо хтось присуджує голос за це рішення, оскільки воно працює, то, будь ласка, також проголосуйте за рішення Кіта.

function convert(src,fb,tb){
  var res=[]
  while(src.length > 0){
    var a=(function(src){
      var d=[];var rem=0
      for each (var i in src){
        var c=i+rem*fb
        var e=Math.floor(c/tb)
        rem=c%tb
        d.length||e?d.push(e):0
      }
      return[d,rem]
    }).call(this,src)
    src=a[0]
    var rem=a[1]
    res.unshift(rem)
  }
  return res
}

Тести

console.log(convert([1, 2, 3, 4], 16, 16))
console.log(convert([1, 0], 10, 100))
console.log(convert([41, 15, 156, 123, 254, 156, 141, 2, 24], 256, 16))
console.log(convert([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 2, 10))
console.log(convert([41, 42, 43], 256, 36))

/*
Produces:
[1, 2, 3, 4]
[10]
[2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
[1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
[1, 21, 29, 22, 3]
*/

Це, мабуть, може скоротитися багато, але я насправді хочу використовувати це для невеликого побічного проекту. Тож я зберіг її читабельно (дещо) і намагався тримати змінні під контролем.


як це javascript? для кожного?
Ернан Еш

Ніяких імен змінних вище трьох символів, застарілого for eachвисловлювання та конструктивних очей, наприклад d.length||e?d.push(e):0... Це виклик викличеного коду чи щось таке? Можна написати те ж саме з зрозумілим синтаксисом та кращими виконаннями.

@kuroineko Це гольф-код. Що ви очікували? Чистий, читабельний код, використовуючи сучасні стандарти? Я ніколи не стверджував, що моя відповідь була ідеальною, і я б точно не використовував її як у виробничому проекті.
Стівен Перлсон

Ну, я справді потребував цей алгоритм в JavaScript чомусь, і мені довелося переписати його з нуля, взявши рішення python за основу. Я вдячний за ваш внесок, але для практичних цілей він був навряд чи корисним для всіх ІМХО.

2

Математика

Не визначено змінних, будь-який вхід приймається до тих пір, поки він вписується в пам'ять.

f[i_, sb_, db_] := IntegerDigits[FromDigits[i, sb], db];

Пробна поїздка:

f[{1,2,3,4},16,16]
f[{1,0},10,100]
f[{41,15,156,123,254,156,141,2,24},256,16]
f[{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},2,10]
f[{41,42,43},256,36]

Вийшов

{1,2,3,4}
{10}
{2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8}
{1,2,3 7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3}
{1,21,29,22,3}

1

Scala:

def toDecimal (li: List[Int], base: Int) : BigInt = li match {                       
  case Nil => BigInt (0)                                                             
  case x :: xs => BigInt (x % base) + (BigInt (base) * toDecimal (xs, base)) }  

def fromDecimal (dec: BigInt, base: Int) : List[Int] =
  if (dec==0L) Nil else (dec % base).toInt :: fromDecimal (dec/base, base)

def x2y (value: List[Int], from: Int, to: Int) =
  fromDecimal (toDecimal (value.reverse, from), to).reverse

Тестовий код з тестами:

def test (li: List[Int], from: Int, to: Int, s: String) = {
 val erg= "" + x2y (li, from, to)
 if (! erg.equals (s))
   println ("2dec: " + toDecimal (li, from) + "\n\terg: " + erg + "\n\texp: " + s)
}   

 test (List (1, 2, 3, 4), 16, 16, "List(1, 2, 3, 4)")
 test (List (1, 0), 10, 100, "List(10)")
 test (List (41, 15, 156, 123, 254, 156, 141, 2, 24), 256, 16, "List(2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8)") 
 test (List (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 
   2, 10, "List(1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3)") 
 test (List (41, 42, 43), 256, 36, "List(1, 21, 29, 22, 3)")

Пройшов усі тести.


1

J, 109 105

Обробляє тисячі цифр без поту. Жодним цілим числом не завдано шкоди!

e=:<.@%,.|~
t=:]`}.@.(0={.)@((e{:)~h=:+//.@)^:_
s=:[t[:+/;.0]*|.@>@(4 :'x((];~[t((*/e/)~>@{.)h)^:(<:#y))1')

Приклади

256 16 s 41 15 156 123 254 156 141 2 24
2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8

256 36 s 41 42 43
1 21 29 22 3

16 16 s 1 2 3 4
1 2 3 4

256 46 s ?.1000$45
14 0 4 23 42 7 11 30 37 10 28 44 ...

time'256 46 s ?.3000$45'  NB. Timing conversion of 3000-vector.
1.96s

Він стає коротшим.


0

Малий розмову, 128

o:=[:n :b|n>b ifTrue:[(o value:n//b value:b),{n\\b}]ifFalse:[{n}]].
f:=[:a :f :t|o value:(a inject:0into:[:s :d|s*f+d])value:t].

тести:

f value:#[41 15 156 123 254 156 141 2 24]
  value:256
  value:16. 
    -> #(2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8)

f value:#[1 2 3 4]
  value:16
  value:16.
    -> #(1 2 3 4)

f value:#[1 0]
  value:10
  value:100.
    -> #(10)

f value:#[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
  value:2
  value:10.
    -> #(1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3)

f value:#[41 42 43]
  value:256
  value:36.
    -> #(1 21 29 22 3)

і для вашого особливого розваги ( виклик: з’ясуйте, що ж такого особливого у вхідному значенні ):

f value:#[3 193 88 29 73 27 40 245 35 194 58 189 243 91 104 156 144 128 0 0 0 0]
  value:256
  value:1000.
    -> #(1 405 6 117 752 879 898 543 142 606 244 511 569 936 384 0 0 0) 
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.