Трикутні точки решітки, близькі до Походження


34

Фон

Трикутна сітка являє собою сітку , утворена на регулярній основі черепиці площині з рівносторонніми трикутниками з довжиною сторони 1. На малюнку нижче наведена приклад трикутної сітки.

Трикутні грати точка є вершиною трикутника , утворює трикутну сітку.

Походження є нерухомою точкою на площині, яка є однією з трикутних точок решітки.

Виклик

Враховуючи невід'ємне ціле число n, знайдіть кількість трикутних точок решітки, відстань яких Евклідовий від початку початок менше або дорівнює n.

Приклад

Наведений нижче рисунок є прикладом для n = 7(показує лише 60-градусну зону для зручності, а точка А - походження):

Випробування

Input | Output
---------------
    0 |       1
    1 |       7
    2 |      19
    3 |      37
    4 |      61
    5 |      91
    6 |     127
    7 |     187
    8 |     241
    9 |     301
   10 |     367
   11 |     439
   12 |     517
   13 |     613
   14 |     721
   15 |     823
   16 |     931
   17 |    1045
   18 |    1165
   19 |    1303
   20 |    1459
   40 |    5815
   60 |   13057
   80 |   23233
  100 |   36295
  200 |  145051
  500 |  906901
 1000 | 3627559

Підказка : Ця послідовність не є OEIS A003215 .

Правила

Діють стандартні правила для . Виграє найкоротше подання.

Вкажіть, будь ласка, як ви вирішили проблему у своєму поданні.


7
OEIS A053416 - це послідовність кількості точок, що містяться в колі діаметру, а не радіуса n, тому має вдвічі більше термінів, ніж потрібно.
Ніл

Relevant Wikipedia and Mathworld. Contains xnor's formula and not proof.
user202729

4
It is the sum of the first n^2+1 terms of OEIS A004016.
alephalpha

Відповіді:


49

Python 2, 43 bytes

f=lambda n,a=1:n*n<a/3or n*n/a*6-f(n,a+a%3)

Try it online!

This is black magic.

Offering 250 rep for a written-up proof. See Lynn's answer for a proof and explanation.


7
How does this work? I've been wondering for a good 30 minutes... It looks so simple but I can't find a relationship between that recursion and circles...
JungHwan Min

7
@JungHwanMin My proof is an epic journey through plane geometry, Eisenstein integers, factorization over number fields, quadratic reciprocity, arithmetic progressions, and interchanging summations -- all for such a simple expression. Writing it all would be a major undertaking that I don't have time for now, so I'm hoping someone else will give a proof, likely a simpler one that mine that makes the connection clearer.
xnor

14
Proof. This is longer than Lynn's but more self-contained: it makes no use of unproven assertions about factorisation over the Eisenstein integers.
Peter Taylor

2
@PeterTaylor Cheddar Monk? As in Darths & Droids?
Neil

3
@Neil, congratulations on being the first person ever to ask! I registered the domain to use it as a bargaining chip for Negotiation, Level 1 in the Academy.
Peter Taylor

30

Haskell, 48 bytes

f n=1+6*sum[(mod(i+1)3-1)*div(n^2)i|i<-[1..n^2]]

Try it online!

Uses xnor's "black magic" formula:

f(n)=1+6a=0n23a+1n23a+2

A proof of its correctness, and an explanation of how xnor managed to express it in 43 bytes of Python, can be found here.

Long story short: we count Eisenstein integers of norm 1Nn2, by factoring N=(x+yω)(x+yω) into Eisenstein primes and counting how many solutions for (x,y) come out of the factorization. We recognize the number of solutions as being equal to

6×((# of divisors of N1 (mod 3))(# of divisors of N2 (mod 3)))

and apply a clever trick to make that really easy to compute for all integers between 1 and n2 at once. This yields the formula above. Finally, we apply some Python golf magic to end up with the really tiny solution xnor found.


4
I certainly didn't expect this when xnor said "there's some deep mathematical insights behind golfing the problem".
Bubbler

29

Wolfram Language (Mathematica), 53 51 50 bytes

-1 byte thanks to @miles

Sum[Boole[x(x+y)+y^2<=#^2],{x,-2#,2#},{y,-2#,2#}]&

Try it online!

How?

Instead of thinking in this:

enter image description here

Think of it like this:

enter image description here

So we apply the tranformation matrix [[sqrt(3)/2, 0], [1/2, 1]] to transform the second figure to the first one.

Then, we must find the circle in the triangular grid in terms of Cartesian coordinates.

(sqrt(3)/2 x)^2 + (1/2 x + y)^2 = x^2 + x y + y^2

So we find lattice points x, y such that x^2 + x y + y^2 <= r^2

For example, with r = 3:

enter image description here


1
FYI, the formula x^2+x y+y^2 can also be derived from the Law of Cosines with 120 degrees.
Bubbler

3
x^2+x y+y^2 -> x(x+y)+y^2 saves a byte
miles

The formula x^2 + xy + y^2 can also be derived from the norm of an Eistenstein integer, which is a^2 - ab + b^2. Note that the sign of a and b is irrelevant except in the term ab so it has the same amount of solutions.
orlp


7

CJam (24 bytes)

{_*_,f{)_)3%(@@/*}1b6*)}

This is an anonymous block (function) which takes one argument on the stack and leaves the result on the stack. Online test suite. Note that the two largest cases are too slow.

Explanation

alephalpha noted in a comment on the question that

It is the sum of the first n^2+1 terms of OEIS A004016

and xnor's answer implements this sum (although I'm not sure whether their unposted proof uses it explicitly) as

f(n)=1+6a=0n23a+1n23a+2

My proof of correctness of that formula is based on some information gleaned from alephalpha's OEIS link:

G.f.: 1 + 6*Sum_{n>=1} x^(3*n-2)/(1-x^(3*n-2)) - x^(3*n-1)/(1-x^(3*n-1)). - Paul D. Hanna, Jul 03 2011

for which the relevant reference is the paper by Hirschhorn. An elementary proof is possible using nothing more than a basic understanding of complex numbers (cube roots of unity, magnitude), the concept of generating functions, the derivative of xa, and the chain rule of differentiation. In summary, we first prove from first principles the Jacobi triple-product identity

k=0(1qk+1)(1+xqk+1)(1+x1qk)=kZqk(k+1)/2xk
That then bootstraps a proof that
m,nZωmnqm2+mn+n2=k=1(1qk)31q3k
where ω is a primitive cube root of unity. The final big step is to use this to show that
m,nZqm2+mn+n2=1+6k0(q3k+11q3k+1q3k+21q3k+2)

Code dissection

{          e# Define a block. Stack: ... r
  _*       e#   Square it
  _,f{     e#   Map with parameter: invokes block for (r^2, 0), (r^2, 1), ... (r^2, r^2-1)
    )      e#     Increment second parameter. Stack: ... r^2 x with 1 <= x <= r^2
    _)3%(  e#     Duplicate x and map to whichever of 0, 1, -1 is equal to it (mod 3)
    @@/*   e#     Evaluate (r^2 / x) * (x mod 3)
  }
  1b6*     e#   Sum and multiply by 6
  )        e#   Increment to count the point at the origin
}

4

J, 27 bytes

[:+/@,*:>:(*++&*:)"{~@i:@+:

Try it online!

Based on JungHwan Min's method.

Explanation

[:+/@,*:>:(*++&*:)"{~@i:@+:  Input: n
                         +:  Double
                      i:     Range [-2n .. 2n]
                  "{~        For each pair (x, y)
                *:             Square both x and y
              +                Add x^2 and y^2
             +                 Plus
            *                  Product of x and y
        >:                   Less than or equal to
      *:                     Square of n
     ,                       Flatten
  +/                         Reduce by addition



3

Jelly,  15  13 bytes

-2 thanks to Dennis (just increment the square to avoid concatenation of a zero; avoid head by using a post-difference modulo-slice rather than a pre-difference slice)

Uses the "black magic" method of honing in on the answer that was exposed by xnor in their Python answer, but uses iteration rather than recursion (and a little less calculation)

²:Ѐ‘$Im3S×6C

A monadic link accepting a non-negative integer and returning a positive integer.

Try it online! Or see the test-suite.

How?

²:Ѐ‘$Im3S×6C - Main Link: non-negative integer, n     e.g. 7
²             - square                                     49
     $        - last two links as a monad:
    ‘         -   increment                                50
  Ѐ          -   map across (implicit range of) right with:
 :            -     integer division                       [49,24,16,12,9,8,7,6,5,4,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]
      I       - incremental differences                    [-25,-8,-4,-3,-1,-1,-1,-1,-1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]
       m3     - every third element                        [-25,-3,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1]
         S    - sum (vectorises)                           -31
          ×6  - multiply by six                           -186
            C - complement (1-X)                           187

2

JavaScript (ES6), 65 bytes

This is a port of @JungHwanMin's solution.

f=(n,y=x=w=n*2)=>y-~w&&(x*x+x*y+y*y<=n*n)+f(n,y-=--x<-w&&(x=w,1))

Try it online!


Original answer (ES7), 70 bytes

Simply walks through the grid and counts the matching points.

f=(n,y=x=n*=2)=>y+n+2&&(x*x*3+(y-x%2)**2<=n*n)+f(n,y-=--x<-n&&(x=n,2))

Try it online!


Porting xnor's answer is shorter: 42 bytes (outputs true instead of 1; 46 if we also integer-divide it). And I don't know JavaScript well enough to golf the integer-divisions ~~(a/b), but I'm sure there is a shorter way for those as well..
Kevin Cruijssen


1

Pari/GP, 42 bytes

Using the built-in qfrep.

n->1+2*vecsum(Vec(qfrep([2,1;1,2],n^2,1)))

qfrep(q,B,{flag=0}): vector of (half) the number of vectors of norms from 1 to B for the integral and definite quadratic form q. If flag is 1, count vectors of even norm from 1 to 2B.

Try it online!


0

C# (Visual C# Interactive Compiler), 68 bytes

n=>{int g(int x,int y)=>x*x<y/3?1:x*x/y*6-g(x,y+y%3);return g(n,1);}

Try it online!

Same as everyone else, unfortunately. I know there's probably a better way of writing this, but declaring and calling a lambda at the same time in c# is not exactly something I do, well, ever. Though in my defense, I can't think of a good reason (outside code golf, of course) to do so. Still, if someone knows how you can do this, let me know and/or steal the credit, I guess.



0

05AB1E, 15 bytes

nD>L÷¥ā3%ÏO6*±Ì

Port of @JonathanAllans Jelly answer, which in turn is a derivative from @xnor's 'black magic' formula.

Try it online or verify all test cases.

Explanation:

n                # Square the (implicit) input-integer
 D>              # Duplicate it, and increase the copy by 1
   L             # Create a list in the range [1, input^2+1]
    ÷            # Integer divide input^2 by each of these integers
     ¥           # Take the deltas
      ā          # Push a list in the range [1, length] without popping the deltas itself
       3%        # Modulo each by 3
         Ï       # Only leave the values at the truthy (==1) indices
          O      # Take the sum of this list
           6*    # Multiply it by 6
             ±   # Take the bitwise NOT (-n-1)
              Ì  # And increase it by 2
                 # (after which the result is output implicitly)
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.