Номери основних обмежень (швидкісне видання)


25

Це послідовність A054261

- е просте число стримування є найменшим числом , яке містить перші простих чисел як подстрок. Наприклад, число є найменшим числом, яке містить перші 3 прайми в якості підрядків, що робить його 3-м простим номером стримування.нн235

Неважливо зрозуміти, що перші чотири прості числа обмежень складають , , і , але потім стає цікавіше. Оскільки наступного простого числа - 11, наступний номер не є , але це оскільки він визначається як найменше число з властивістю.2232352357235711112357

Однак справжній виклик виникає, коли ви виходите за межі 11. Наступний номер основного стримування - . Зверніть увагу, що в цьому числі підрядок і перекриваються. Число також перекривається числом .1132571113313

Неважко довести, що ця послідовність збільшується, оскільки наступному номеру необхідно виконати всі критерії числа до нього та мати ще одну підрядку. Однак послідовність не суворо зростає, як показують результати за n=10і n=11.

Виклик

Ваша мета - знайти якомога більше простих номерів утримання. Ваша програма повинна виводити їх впорядкованому способі, починаючи з 2 та йдучи вгору.

Правила

  1. Вам дозволяється жорсткий код простих чисел.
  2. Вам заборонено вводити жорсткі коди простих стримуючих номерів ( 2єдиний виняток) або будь-які магічні числа, що робить виклик тривіальним. Будь ласка, приємно.
  3. Ви можете користуватися будь-якою мовою. Будь ласка, додайте список команд, щоб підготувати середовище до виконання коду.
  4. Ви можете вільно користуватися як процесором, так і графічним процесором, а також можете використовувати багатопотокове читання.

Оцінка балів

Офіційна оцінка буде з мого ноутбука (dell XPS 9560). Ваша мета - генерувати якомога більше простих номерів обмежень протягом 5 хвилин.

Технічні характеристики

  • 2,8 ГГц Intel Core i7-7700HQ (3,8 ГГц) 4 ядра, 8 потоків.
  • 16 ГБ оперативної пам'яті DDR4 16 ГБ 2400 МГц
  • NVIDIA GTX 1050
  • Linux Mint 18.3 64-розрядний

Наразі знайдені цифри, разом із останнім простим числом, доданим до числа:

 1 =>                                                       2 (  2)
 2 =>                                                      23 (  3)
 3 =>                                                     235 (  5)
 4 =>                                                    2357 (  7)
 5 =>                                                  112357 ( 11)
 6 =>                                                  113257 ( 13)
 7 =>                                                 1131725 ( 17)
 8 =>                                               113171925 ( 19)
 9 =>                                              1131719235 ( 23)
10 =>                                            113171923295 ( 29)
11 =>                                            113171923295 ( 31)
12 =>                                           1131719237295 ( 37)
13 =>                                          11317237294195 ( 41)
14 =>                                        1131723294194375 ( 43)
15 =>                                      113172329419437475 ( 47)
16 =>                                     1131723294194347537 ( 53)
17 =>                                   113172329419434753759 ( 59)
18 =>                                  2311329417434753759619 ( 61)
19 =>                                231132941743475375961967 ( 67)
20 =>                               2311294134347175375961967 ( 71)
21 =>                              23112941343471735375961967 ( 73)
22 =>                             231129413434717353759619679 ( 79)
23 =>                           23112941343471735359619678379 ( 83)
24 =>                         2311294134347173535961967837989 ( 89)
25 =>                        23112941343471735359619678378979 ( 97)
26 =>                      2310112941343471735359619678378979 (101)
27 =>                    231010329411343471735359619678378979 (103)
28 =>                 101031071132329417343475359619678378979 (107)
29 =>              101031071091132329417343475359619678378979 (109)
30 =>              101031071091132329417343475359619678378979 (113)
31 =>           101031071091131272329417343475359619678378979 (127)
32 =>           101031071091131272329417343475359619678378979 (131)
33 =>         10103107109113127137232941734347535961967838979 (137)
34 =>      10103107109113127137139232941734347535961967838979 (139)
35 =>   10103107109113127137139149232941734347535961967838979 (149)
36 => 1010310710911312713713914923294151734347535961967838979 (151)

Дякуємо Арднаульду, Уроду та Джафу за розширення цього списку.

Зауважимо, що це n = 10і n = 11те саме число, оскільки - найменше число, яке містить усі числа , але воно також містить .113171923295[2,3,5,7,11,13,17,19,23,29]31

Для довідки ви можете використовувати той факт, що оригінальний сценарій Python, який я написав для створення цього списку вище, обчислює перші 12 термінів приблизно за 6 хвилин.

Додаткові правила

Після перших результатів я зрозумів, що є хороший шанс, що найкращі результати можуть мати однаковий результат. У випадку, якщо зрівняється нічия, переможцем стане той, хто має найкоротший час для отримання результату. Якщо два чи більше відповідей дадуть результати однаково швидко, це буде просто перемога.

Заключна примітка

5-хвилинний час виконання призначається лише для забезпечення справедливого балу. Мені було б дуже цікаво побачити, чи можемо ми продовжувати послідовність OEIS далі (зараз вона містить 17 номерів). За допомогою коду Уроуса я генерував усі цифри до цього часу n = 26, але планую дозволити коду працювати довше.

Табло

  1. Python 3 + Інструменти Google OR : 169
  2. Scala : 137 (неофіційно)
  3. Solver TSP Concorde : 84 (неофіційно)
  4. С ++ (GCC) + x86 збірка : 62
  5. Чисто : 25
  6. JavaScript (Node.js) : 24

1
Нещодавно я перейшов на драйвер nouveau замість драйвера nvidia через жахливе процесування процесора під час використання nvidia. Якщо хтось подає рішення, що підсилює куду, я не зможу перевірити його відразу, але я спробую перевірити його протягом розумного часу.
maxb

щодо правила 2: що робити, якщо замість жорсткого кодування n ми жорстко кодуємо n-1 і починаємо шукати звідти? :)
ngn

@ngn Мені, можливо, доведеться трохи детальніше вказати, що дозволено. Звичайно, вам дозволяється зберегти попередній результат, що робить пошук n=11тривіальним, оскільки вам потрібно лише перевірити, що n=10також відповідає новій умові. Я також заперечую, що жорстке кодування допомагає лише до n=17тих пір , оскільки за цією точкою я не знаю жодної цифри, наскільки мені вдалося дізнатися.
maxb

Я мав на увазі жорстке кодування [1,22,234,2356,112356,113256,1131724,113171924,1131719234,113171923294,113171923294,1131719237294]і почав пошук з кожного
ngn

4
Наскільки я можу сказати, це лише окремий випадок найкоротшої поширеної проблеми суперструн, і це, як відомо, є NP-завершеним, так що це в основному випадки уникнення неефективності.
Ніл

Відповіді:


9

Python 3 + Google OR-Tools , оцінка 169 за 295 секунд (офіційний рахунок)

Як це працює

Після відміни зайвих прайметів, що містяться в інших прайме, намалюйте спрямований графік ребром від кожного простого до кожного з його суфіксів, з нулем відстані та краєм до кожного простого від кожного з його префіксів, при цьому відстань визначається кількістю доданих цифр . Шукаємо лексикографічно перший найкоротший шлях через графік, починаючи з порожнього префікса, проходячи через кожну просту (але не обов’язково через кожен префікс чи суфікс) і закінчуючи на порожній суфікс.

Наприклад, ось ребра оптимального шляху ε → 11 → 1 → 13 → 3 → 31 → 1 → 17 → ε → 19 → ε → 23 → ε → 29 → ε → 5 → ε при n = 11, відповідні до вихідного рядка 113171923295.

графік

Порівняно з прямим скороченням проблеми продавця подорожі , зауважте, що, підключаючи прайми опосередковано через ці додаткові суфіксні / префіксні вузли, замість безпосередньо один до одного, ми різко зменшили кількість ребер, які нам потрібно врахувати. Але оскільки зайві вузли не потрібно проходити рівно один раз, це вже не екземпляр TSP.

Ми використовуємо додатковий вирішувач обмежень CP-SAT Google OR-Tools, спочатку для мінімізації загальної довжини шляху, а потім для мінімізації кожної групи доданих цифр у порядку. Ми ініціалізуємо модель лише з локальними обмеженнями: кожен простий передує одному суфіксу та має один префікс, а кожен суфікс / префікс передує та має однакову кількість простих ліній. Отримана модель може містити відключені цикли; якщо це так, ми додаємо додаткові обмеження для підключення динамічно і повторно запускаємо рішення.

Код

import multiprocessing
from ortools.sat.python import cp_model


def superstring(strings):
    def gen_prefixes(s):
        for i in range(len(s)):
            a = s[:i]
            if a in affixes:
                yield a

    def gen_suffixes(s):
        for i in range(1, len(s) + 1):
            a = s[i:]
            if a in affixes:
                yield a

    def solve():
        def find_string(s):
            found_strings.add(s)
            for i in range(1, len(s) + 1):
                a = s[i:]
                if (
                    a in affixes
                    and a not in found_affixes
                    and solver.Value(suffix[s, a])
                ):
                    found_affixes.add(a)
                    q.append(a)
                    break

        def cut(skip):
            model.AddBoolOr(
                skip
                + [
                    suffix[s, a]
                    for s in found_strings
                    for a in gen_suffixes(s)
                    if a not in found_affixes
                ]
                + [
                    prefix[a, s]
                    for s in unused_strings
                    if s not in found_strings
                    for a in gen_prefixes(s)
                    if a in found_affixes
                ]
            )
            model.AddBoolOr(
                skip
                + [
                    suffix[s, a]
                    for s in unused_strings
                    if s not in found_strings
                    for a in gen_suffixes(s)
                    if a in found_affixes
                ]
                + [
                    prefix[a, s]
                    for s in found_strings
                    for a in gen_prefixes(s)
                    if a not in found_affixes
                ]
            )

        def search():
            while q:
                a = q.pop()
                for s in prefixed[a]:
                    if (
                        s in unused_strings
                        and s not in found_strings
                        and solver.Value(prefix[a, s])
                    ):
                        find_string(s)
            return not (unused_strings - found_strings)

        while True:
            if solver.Solve(model) != cp_model.OPTIMAL:
                raise RuntimeError("Solve failed")

            found_strings = set()
            found_affixes = set()
            if part is None:
                found_affixes.add("")
                q = [""]
            else:
                part_ix = solver.Value(part)
                p, next_affix, next_string = parts[part_ix]
                q = []
                find_string(next_string)
            if search():
                break

            if part is not None:
                if part_ix not in partb:
                    partb[part_ix] = model.NewBoolVar("partb%s_%s" % (step, part_ix))
                    model.Add(part == part_ix).OnlyEnforceIf(partb[part_ix])
                    model.Add(part != part_ix).OnlyEnforceIf(partb[part_ix].Not())
                cut([partb[part_ix].Not()])
                if last_string is None:
                    found_affixes.add(next_affix)
                else:
                    find_string(last_string)
                q.append(next_affix)
                if search():
                    continue

            cut([])

    solver = cp_model.CpSolver()
    solver.parameters.num_search_workers = 4
    affixes = {s[:i] for s in strings for i in range(len(s))} & {
        s[i:] for s in strings for i in range(1, len(s) + 1)
    }
    prefixed = {}
    for s in strings:
        for a in gen_prefixes(s):
            prefixed.setdefault(a, []).append(s)
    suffixed = {}
    for s in strings:
        for a in gen_suffixes(s):
            suffixed.setdefault(a, []).append(s)
    unused_strings = set(strings)
    last_string = None
    part = None

    model = cp_model.CpModel()
    prefix = {
        (a, s): model.NewBoolVar("prefix_%s_%s" % (a, s))
        for a in affixes
        for s in prefixed[a]
    }
    suffix = {
        (s, a): model.NewBoolVar("suffix_%s_%s" % (s, a))
        for a in affixes
        for s in suffixed[a]
    }
    for s in strings:
        model.Add(sum(prefix[a, s] for a in gen_prefixes(s)) == 1)
        model.Add(sum(suffix[s, a] for a in gen_suffixes(s)) == 1)
    for a in affixes:
        model.Add(
            sum(suffix[s, a] for s in suffixed[a])
            == sum(prefix[a, s] for s in prefixed[a])
        )

    length = sum(prefix[a, s] * (len(s) - len(a)) for a in affixes for s in prefixed[a])
    model.Minimize(length)
    solve()
    model.Add(length == solver.Value(length))

    out = ""
    for step in range(len(strings)):
        in_parts = set()
        parts = []
        for a in [""] if last_string is None else gen_suffixes(last_string):
            for s in prefixed[a]:
                if s in unused_strings and s not in in_parts:
                    in_parts.add(s)
                    parts.append((s[len(a) :], a, s))
        parts.sort()
        part = model.NewIntVar(0, len(parts) - 1, "part%s" % step)
        partb = {}
        for part_ix, (p, a, s) in enumerate(parts):
            if last_string is not None:
                model.Add(part != part_ix).OnlyEnforceIf(suffix[last_string, a].Not())
            model.Add(part != part_ix).OnlyEnforceIf(prefix[a, s].Not())
        model.Minimize(part)
        solve()
        part_ix = solver.Value(part)
        model.Add(part == part_ix)
        p, a, last_string = parts[part_ix]
        unused_strings.remove(last_string)
        out += p
    return out


def gen_primes():
    yield 2
    n = 3
    d = {}
    for p in gen_primes():
        p2 = p * p
        d[p2] = 2 * p
        while n <= p2:
            if n in d:
                q = d.pop(n)
                m = n + q
                while m in d:
                    m += q
                d[m] = q
            else:
                yield n
            n += 2


def gen_inputs():
    num_primes = 0
    strings = []

    for new_prime in gen_primes():
        num_primes += 1
        new_string = str(new_prime)
        strings = [s for s in strings if s not in new_string] + [new_string]
        yield strings


with multiprocessing.Pool() as pool:
    for i, out in enumerate(pool.imap(superstring, gen_inputs())):
        print(i + 1, out, flush=True)

Результати

Ось перші 1000 простих номерів утримання , обчислені за 1½ дня за системою 8-ядерних / 16-потокових.


Фантастичне рішення! Використовувати специфіку проблеми розумно, це саме те, що я хотіла від відповідей на це питання. Я запустив його на своєму ноутбуку зараз для неофіційного підрахунку, і я дістався до 153 протягом 5 хвилин. Пізніше сьогодні я дам вам офіційне підрахунок і переконуюсь, що ваш результат здається правильним. Здається, ви ведете, вітаю!
maxb

Я підтвердив результати @ AndersKaseorg до 1000 за допомогою рішення на базі Concorde (приблизно в 5 разів повільніше!). Я вирішив повторно перевірити їх, тому що обидва вирішувачі, здається, використовують LP з плаваючою комою всередині, і я побачив, що Concorde кілька разів перервав. помилки округлення.
Джаф

Я знаю, що це трохи пізно, але я нарешті вирішив завантажити результати в OEIS. Оскільки ви були переможцем виклику, чи хочете, щоб вас вважали відкривачем нових номерів?
maxb

@maxb Звучить мені добре, дякую!
Андерс Касеорг

14

C ++ (GCC) + x86 збірка, оцінка 32 36 62 за 259 секунд (офіційно)

Результати, обчислені до цих пір. Після мого комп'ютера не вистачає пам'яті 65.

1 2
2 23
3 235
4 2357
5 112357
6 113257
7 1131725
8 113171925
9 1131719235
10 113171923295
11 113171923295
12 1131719237295
13 11317237294195
14 1131723294194375
15 113172329419437475
16 1131723294194347537
17 113172329419434753759
18 2311329417434753759619
19 231132941743475375961967
20 2311294134347175375961967
21 23112941343471735375961967
22 231129413434717353759619679
23 23112941343471735359619678379
24 2311294134347173535961967837989
25 23112941343471735359619678378979
26 2310112941343471735359619678378979
27 231010329411343471735359619678378979
28 101031071132329417343475359619678378979
29 101031071091132329417343475359619678378979
30 101031071091132329417343475359619678378979
31 101031071091131272329417343475359619678378979
32 101031071091131272329417343475359619678378979
33 10103107109113127137232941734347535961967838979
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961967838979
36 1010310710911312713713914923294151734347535961967838979
37 1010310710911312713713914915157232941734347535961967838979
38 1010310710911312713713914915157163232941734347535961967838979
39 10103107109113127137139149151571631672329417343475359619798389
40 10103107109113127137139149151571631672329417343475359619798389
41 1010310710911312713713914915157163167173232941794347535961978389
42 101031071091131271371391491515716316717323294179434753596181978389
43 101031071091131271371391491515716316723294173434753596181917978389
44 101031071091131271371391491515716316717323294179434753596181919383897
45 10103107109113127137139149151571631671731792329418191934347535961978389
46 10103107109113127137139149151571631671731791819193232941974347535961998389
47 101031071091271313714915157163167173179181919321139232941974347535961998389
48 1010310710912713137149151571631671731791819193211392232941974347535961998389
49 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989

Усі вони згодні з висновком рішення, що базується на Конкорде , тому вони мають великий шанс бути правильним.

Журнал змін:

  • Неправильний розрахунок необхідної довжини контексту. Рання версія була 1 занадто великою, а також мала помилку. Оцінка: 32 34

  • Додана оптимізація за рівними контекстами. Оцінка: 34 36

  • Перероблений алгоритм, щоб правильно використовувати контекстні рядки, а також деякі інші оптимізації. Оцінка: 36 62

  • Додано правильне оформлення.

  • Додано варіант простих чисел.

Як це працює

Попередження: це мозковий відвал. Прокрутіть до кінця, якщо ви просто хочете код.

Скорочення:

Ця програма в основному використовує алгоритм динамічного програмування підручника для TSP.

  1. Плюс зменшення від PCN / SCS - проблеми, яку ми фактично вирішуємо, до TSP.
  2. Плюс використання контекстів предметів замість усіх цифр у кожному елементі.
  3. Плюс розділити проблему на основі прайметів, які не можуть перетинатися з кінцями інших прайменів.
  4. Плюс об'єднання обчислень для простих чисел з однаковими початковими та кінцевими цифрами.
  5. Плюс попередньо обчислені таблиці пошуку та спеціальна хеш-таблиця.
  6. Плюс кілька низьких рівнів попереднього завантаження та розфасовки.

Це багато потенційних помилок. Після роздумів із записом ангельма і не змогли припустити жодних неправильних результатів, я повинен хоча б довести, що мій загальний підхід правильний.

Хоча рішення на основі Конкорда (набагато, набагато) швидше, воно базується на однаковому зменшенні, тому це пояснення стосується обох. Крім того, це рішення може бути адаптоване для OEIS A054260 , послідовності простих праймерів ; Я не знаю, як це ефективно вирішити в рамках TSP. Тож це все ще дещо актуально.

Зменшення TSP

Почнемо з того, що фактично доведемо, що зниження до TSP є правильним. Скажімо, у нас набір рядків

A = 13, 31, 37, 113, 137, 211

і ми хочемо знайти найменший суперструн, який містить ці елементи.

Знання довжини достатньо

Для ПКН, якщо є кілька найкоротших рядків, ми повинні повернути лексикографічно найменший. Але ми розглянемо іншу (і простіше) проблему.

  • SCS : З огляду на початковий префікс і набір елементів, знайдіть будь-який найкоротший рядок, який містить усі елементи як підрядки, і почніть з цього префікса.
  • SCS-Length : Просто знайдіть довжину SCS.

Якщо ми можемо розв’язати довжину SCS, ми зможемо реконструювати найменший розв'язок і отримати PCN. Якщо ми знаємо, що найменше рішення починається з нашого префікса, ми намагаємось розширити його, додавши кожен елемент у лексикографічному порядку та вирішивши на довжину ще раз. Коли ми знаходимо найменший предмет, для якого довжина рішення однакова, ми знаємо, що це повинен бути наступний елемент у найменшому рішенні (чому?), Тому додаємо його та повторюємо решту елементів. Цей спосіб досягнення рішення називається самовідновленням .

Обхід графіка максимального перекриття

Припустимо, ми почали вирішувати SCS для наведеного вище прикладу вручну. Ми, мабуть,:

  • Позбавтеся 13і 37тому, що вони вже є підрядками інших елементів. Будь-яке рішення, яке містить 137, наприклад, повинно також містити 13і 37.
  • Почніть з урахуванням комбінації 113,137 → 1137, 211,113 → 2113і т.д.

Насправді це правильно зробити, але давайте доведемо це заради повноти. Прийміть будь-яке рішення SCS; наприклад, сама коротка суперструн для AIS

2113137

і його можна розкласти на об'єднання всіх елементів у A:

211
 113
   31
    137

(Ми ігноруємо зайві елементи 13, 37.) Зауважте, що:

  1. Початкові та кінцеві позиції кожного елемента збільшуються щонайменше на 1.
  2. Кожен предмет максимально перекривається попереднім.

Ми покажемо, що кожну найкоротшу суперстругу можна розкласти таким чином:

  1. Для кожної пари суміжних елементів x,y, yпочинаються і закінчуються на більш пізніх позиціях , ніж x. Якщо це неправда, то або xце підряд, yабо навпаки. Але ми вже видалили всі елементи, які є підрядками, так що цього не може статися.

  2. Припустимо, сусідні елементи в послідовності мають менше, ніж максимальне перекриття, наприклад 21113замість 2113. Але це зробило б зайве 1. Не пізніший елемент не потребує початкового 1(як у 2 1 113), оскільки він виникає раніше 113, а всі елементи, які з’являються після, 113не можуть починатись із цифри раніше 113(див. Пункт 1). Аналогічний аргумент заважає використовувати останні додаткові 1(як у 211 1 3) будь-який елемент раніше 211. Але наш найкоротший суперструмент, за визначенням, не матиме зайвих цифр, тому таких немаксимальних перекриттів не буде.

За допомогою цих властивостей ми можемо перетворити будь-яку проблему SCS в TSP:

  1. Видаліть усі елементи, які є підрядками інших елементів.
  2. Створіть спрямований графік, який має одну вершину для кожного елемента.
  3. Для кожної пари елементів x, yдодайте край від xдо y, вага якого кількість додаткових символів , доданого шляхом додавання yдо xз максимальним перекриттям. Наприклад, ми додамо край від 211до 113ваги 1, тому що 2113додаємо ще одну цифру 211. Повторіть для краю від yдо x.
  4. Додайте вершину для початкового префікса та ребра від нього до всіх інших елементів.

Будь-який шлях на цьому графіку, починаючи з початкового префікса, відповідає максимальному конвертації перекриття всіх елементів на цьому шляху, а загальна вага шляху дорівнює зв'язаній довжині рядка. Тому кожен тур з найменшою вагою, який відвідує всі предмети хоча б один раз, відповідає найкоротшій суперструнці.

І це скорочення від SCS (і SCS-Length) до TSP.

Алгоритм динамічного програмування

Це класичний алгоритм, але ми його досить модифікуємо, тому ось швидке нагадування.

(Я написав це як алгоритм для SCS-Length замість TSP. Вони по суті еквівалентні, але словник SCS допомагає, коли ми переходимо до конкретних оптимізацій для SCS.)

Назвіть набір елементів введення Aта вказаний префікс P. Для кожного k-елементного підмножини Sв A, і кожен елемент eз S, ми обчислити довжину найкоротшої рядки , яка починається з P, містить всі Sі закінчується e. Це включає збереження таблиці від значень (S, e)до їх SCS-довжини.

Коли ми переходимо до кожного підмножини S, таблиця повинна вже містити результати S - {e}для всіх eв S. Як видно з таблиці можна отримати досить великий, я обчислити результати для всіх kелементних підмножин, то k+1і т.д. Для цього нам потрібно тільки для зберігання результатів для kі k+1в будь-який час. Це зменшує споживання пам'яті приблизно в два рази sqrt(|A|).

Ще одна деталь: замість обчислення мінімальної довжини SCS я фактично обчислюю максимальне загальне перекриття між елементами. (Щоб отримати довжину SCS, просто відніміть загальне накладення від суми довжин елементів.) Використання перекриттів допомагає деяким з наступних оптимізацій.

[2.] Контексти предметів

Контекст є найдовшим суфіксом елемента , який може перекриватися з наступними пунктами. Якщо наші предмети є 113,211,311, то 11це контекст для 211та 311. (Це також контекст префікса 113, який ми розглянемо в частині [4.])

В алгоритмі DP вище ми відстежували рішення SCS, які закінчуються кожним елементом, але нас насправді не цікавить, на якому елементі закінчується SCS. Все, що нам потрібно знати, це контекст. Так, наприклад, якщо два SCS для одного і того ж набору закінчуються 23і 43будь-яка SCS, яка продовжується з однієї, також буде працювати для іншої.

Це значна оптимізація, оскільки нетривіальні праймери закінчуються лише цифрами 1 3 7 9. Чотири 1,3,7,9одноцифрових контексту (плюс порожній контекст) насправді достатньо для обчислення PCN для праймерів до 131.

[3.] Безтекстові елементи

Інші вже вказували на те, що багато праймес починаються з цифр 2,4,5,6,8, як-от 23,29,41,43.... Жоден з них не може перекриватися з попереднім штрихом ( в стороні від 2і 5, простих числа не можуть закінчуватися в цих цифрах, 2і 5вже було видалено в якості надлишкового). У коді вони позначаються як контекстні рядки .

Якщо в нашому введенні є контекстні елементи, кожне рішення SCS можна розділити на блоки

<prefix>... 23... 29... 41... 43...

і перекриття в кожному блоці не залежать від інших блоків. Ми можемо переміщувати блоки або поміняти елементи між блоками, що мають однаковий контекст, не змінюючи довжину SCS.

Таким чином, нам потрібно лише відслідковувати можливі безлічі контекстів, по одному для кожного блоку.

Повний приклад: для простих ліній менше 100, ми маємо 11 безконтекстних елементів та їх контекстів:

23 29 41 43 47 53 59 61 67 83 89
 3  9  1  3  7  3  9  1  7  3  9

Наш початковий контекст з декількома наборами:

1 1 3 3 3 3 7 7 9 9 9

Код посилається на них як на комбіновані контексти чи контексти . Потім нам потрібно розглянути лише підмножини решти елементів:

11 13 17 19 31 37 71 73 79 97

[4.] Злиття контексту

Як тільки ми дістаємося до простих ліжок з 3 цифрами або більше, з’являється більше надмірностей:

 101 151 181 191 ...
 107 127 157 167 197 ...
 109 149 1009 ...

Ці групи поділяють однаковий початковий і закінчуючий контексти (зазвичай - це залежить від того, які інші праймери вводяться), тому вони не відрізняються при перекритті інших елементів. Ми дбаємо лише про перекриття, тому можемо ставитися до прайменів у цих групах рівних контекстів як до нерозрізних. Тепер наші підмножини DP конденсовані у багатопіднабори

4 × 1_1
5 × 1_7
3 × 1_9

(Тому також розв'язувач максимізує довжину накладання, а не мінімізує довжину SCS. Ця оптимізація зберігає довжину накладання.)

Резюме: оптимізації високого рівня

Запуск з INFOвиводу налагодження буде друкувати статистику, як

solve: N=43, N_search=26, ccontext_size=18, #contexts=7, #eq_context_groups=16

Цей конкретний рядок призначений для довжини SCS перших 62 праймерів 2до 293.

  • Після видалення зайвих елементів нам залишається 43 прайми, які не є підрядками один одного.
  • Є 7 унікальних контекстів : 1,3,7,11,13,27плюс порожній рядок.
  • 17 з 43 простих чисел є контекстно-вільним : 43,47,53,59,61,89,211,223,227,229,241,251,257,263,269,281,283. Ці та даний префікс (у даному випадку порожній рядок) складають основу початкового комбінованого контексту .
  • У решті 26 пунктів ( N_search) існує 16 нетривіальних рівних контекстних груп .

Використовуючи ці структури, для розрахунку довжини SCS потрібно лише перевірити 8498336 (multiset, ccontext)комбінацій. Безперервне динамічне програмування здійснюватиме 43×2^43 > 3×10^14кроки, а грубе форсування перестановок - 6×10^52кроки. Програмі ще потрібно запустити SCS-Length ще кілька разів, щоб відновити рішення PCN, але це не займе багато часу.

[5., 6.] Низькорівневі оптимізації

Замість виконання рядкових операцій розв'язувач довжини SCS працює з індексами елементів і контекстів. Я також попередньо обчислюю суму перекриття між кожним контекстом і парами елементів.

У коді спочатку використовувались GCC unordered_map, які, здається, є хеш-таблицею із пов'язаними відрізками списку та простими розмірами хешу (тобто дорогими поділами). Тому я написав власну хеш-таблицю з лінійним зондуванням та потужністю двох розмірів. Це забезпечує 3-кратну швидкість і 3 × зменшення пам’яті.

Кожен стан таблиці складається з безлічі елементів, комбінованого контексту та кількості перекриттів. Вони упаковані в 128-бітні записи: 8 для кількості перекриттів, 56 для мультисети (як біт з кодуванням довжини пробігу) і 64 для контексту (1-обмежений RLE). Кодування та розшифровка ccontext була найскладнішою частиною, і я в кінцевому підсумку використовував нову PDEPінструкцію (вона така нова, GCC ще не має для неї суттєвої).

Нарешті, доступ до хеш-таблиці дійсно повільний, коли Nстає великим, тому що таблиця більше не вміщується в кеш. Але єдина причина, яку ми записуємо в хеш-таблицю, - це оновити найвідоміший кількість перекриттів для кожного стану. Програма розбиває цей крок на чергу попереднього вибору, а внутрішній цикл попередньо вибирає кожен пошук таблиці за кілька ітерацій, перш ніж реально оновити цей слот. Ще 2 × прискорення на моєму комп’ютері.

Бонус: подальші вдосконалення

AKA Як конкорде так швидко?

Я не дуже багато знаю про алгоритми TSP, тому ось приблизна здогадка.

Concorde використовує метод розгалуження та вирізання TSP.

  • Він кодує TSP як цілу лінійну програму
  • Він використовує лінійні методи програмування, а також початкову евристику для отримання нижньої та верхньої меж на оптимальній відстані туру
  • Потім ці межі подаються у гілку та зв'язаний рекурсивний алгоритм, який шукає оптимальне рішення. Великі частини дерева пошуку можна обрізати, якщо обчислена нижня межа для піддерева перевищує відому верхню межу
  • Він також шукає ріжучі площини, щоб посилити релаксацію LP та отримати кращі межі. Зазвичай ці скорочення кодують знання про те, що змінні рішення повинні бути цілими числами

Очевидні ідеї, які ми могли б спробувати:

  • Обрізка в розв’язувачі довжини SCS, особливо при реконструкції розчину PCN (на той момент ми вже знаємо, яка довжина розчину)
  • Отримання простих для обчислення нижчих меж для SCS, які можна використовувати для обрізки
  • Знаходження більшої симетрії або надмірностей у розподілі простих чисел для використання

Однак комбінація між гілками та обрізками є дуже потужною, тому ми можемо не мати змоги перемогти найсучасніший вирішувач, як Concorde, для великих значень N.

Бонусний бонус: основні суми стримування

В відміну від Згоди на основі рішення, ця програма може бути змінена , щоб знайти найменші , що містять прості числа ( OEIS A054260 ). Це передбачає три зміни:

  1. 1/ln(н)

  2. Змініть код розв’язувача довжини SCS, щоб класифікувати рішення, виходячи з того, чи діють їхні розрядні суми на 3. Це включає додавання іншого запису, цифри суми цифр 3, до кожного стану DP. Це значно зменшує шанси застрягання основного вирішувача з непростіми перестановками. Це та зміна, яку я не міг розробити, як перекласти TSP. Це може бути закодовано в ILP, але тоді мені доведеться дізнатися про цю річ, яку називають "нерівність підкорів", і як їх генерувати.

  3. Можливо, всі найкоротші ПКН поділяються на 3. У цьому випадку найменший прайм стримування повинен бути принаймні на одну цифру довший, ніж ПКН. Якщо наш вирішувач SCS-Length виявить це, код реконструкції рішення має можливість додати одну зайву цифру в будь-який момент процесу. Він намагається додати кожну можливу цифру 0..9та кожен елемент, що залишився, до префіксу поточного рішення, у лексикографічному порядку, як і раніше.

Завдяки цим змінам я можу отримати рішення до N=62. За винятком випадків 47, коли код реконструкції застрягає і здається після 1 мільйона кроків (поки не знаю чому). Основними елементами стримування є:

1 2
2 23
3 523
4 2357
5 112573
6 511327
7 1135217
8 1113251719
9 11171323519
10 113171952923
11 113171952923
12 11131951723729
13 11317237419529
14 1131723294375419
15 113172329541947437
16 1131723294195343747
17 1113172329419434753759
18 11231329417437475361959
19 231132941743475375967619
20 2311294134347175967619537
21 23112941343471735967619537
22 231129413434717359537679619
23 23112941343471735375961983679
24 11231294134347173535961967983789
25 23112941343471735359679837619789
26 2310112941343471735359619783789679
27 231010329411343471735359619678379897
28 101031071132329417343475359619798376789
29 101031071091132329417343475359619767898379
30 101031071091132329417343475359619767898379
31 1010310710911131272329417343475359619678979837
32 1010310710911131272329417343475359619678979837
33 10103107109113127137232941734347535978961967983
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961976798389
36 1010310710911312713713914923294151734347535976198389679
37 1010310710911312713713914915157232941734347535967619798389
38 10103107109111312713713914915157163232941734347535967897961983
39 10103107109113127137139149151571631672329417343475961979838953
40 10103107109113127137139149151571631672329417343475961979838953
41 10103107109111312713713914915157163167173232941794347535976198983
42 1010310710911131271371391491515716316717323294179434761819535989783
43 1010310710911131271371391491515716316723294173434753596181917989783
44 101031071091131271371391491515716316717323294179434753836181919389597
45 10103107109113127137139149151571631671731792329418191934347538961975983
46 101031071091113127137139149151571631671731791819193232941974347535989836199
47 (failed)
48 1010310710912713137149151571631671731791819193211392232941974347895359836199
49 10103107109112713137149151571631671731791819193211392232272941974347619983535989
50 10103107109127131371491515716316717317918191932113922322722941974347595389836199
51 101031071091271313714915157163167173179181919321139223322722941974347595389619983
52 101031071091271313714915157163167173179181919321139223322722923941974347538361995989
53 10103107109112713137149151571631671731791819193211392233227229239241974347619983538959
54 101031071091271313714915157163167173179211392233227229239241819193251974347619953835989
55 1010310710911271313714915157163167173179211392233227229239241819193251974325747596199538983
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347619959895383
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694359538983619947
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694359538983619947
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535983896199
60 1010310710911271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343538947619959
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343534759896199

Код

Компілювати з

g++ -std=c++14 -O3 -march=native pcn.cpp -o pcn

Для версії простих чисел також посилайтесь на GMPlib, наприклад

g++ -std=c++14 -O3 -march=native pcn-prime.cpp -o pcn-prime -lgmp -lgmpxx

Ця програма використовує інструкцію PDEP, яка доступна лише на останніх процесорах (Haswell +) x86. І мій комп'ютер, і Maxb підтримують це. Якщо у вас немає, програма збиратиметься у повільній версії програмного забезпечення. Коли це станеться, друкується попередження про компіляцію.

#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <vector>
#include <unordered_map>
#include <string>
#include <algorithm>
#include <array>

using namespace std;

void debug_dummy(...) {
}

#ifndef INFO
//#  define INFO(...) fprintf(stderr, __VA_ARGS__)
#  define INFO debug_dummy
#endif

#ifndef DEBUG
//#    define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#  define DEBUG debug_dummy
#endif

bool is_prime(size_t n)
{
    for (size_t d = 2; d * d <= n; ++d) {
        if (n % d == 0) {
            return false;
        }
    }
    return true;
}

// bitset, works for up to 64 strings
using bitset_t = uint64_t;
const size_t bitset_bits = 64;

// Find position of n-th set bit of x
uint64_t bit_select(uint64_t x, size_t n) {
#ifdef __BMI2__
    // Bug: GCC doesn't seem to provide the _pdep_u64 intrinsic,
    // despite what its manual claims. Neither does Clang!
    //size_t r = _pdep_u64(ccontext_t(1) << new_context, ccontext1);
    size_t r;
    // NB: actual operand order is %2, %1 despite the intrinsic taking %1, %2
    asm ("pdep %2, %1, %0"
         : "=r" (r)
         : "r" (uint64_t(1) << n), "r" (x)
         );
    return __builtin_ctzll(r);
#else
#  warning "bit_select: no x86 BMI2 instruction set, falling back to slow code"
    size_t k = 0, m = 0;
    for (; m < 64; ++m) {
        if (x & (uint64_t(1) << m)) {
            if (k == n) {
                break;
            }
            ++k;
        }
    }
    return m;
#endif
}

#ifndef likely
#  define likely(x) __builtin_expect(x, 1)
#endif
#ifndef unlikely
#  define unlikely(x) __builtin_expect(x, 0)
#endif

// Return the shortest string that begins with a and ends with b
string join_strings(string a, string b) {
    for (size_t overlap = min(a.size(), b.size()); overlap > 0; --overlap) {
        if (a.substr(a.size() - overlap) == b.substr(0, overlap)) {
            return a + b.substr(overlap);
        }
    }
    return a + b;
}

vector <string> dedup_items(string context0, vector <string> items)
{
    vector <string> items2;
    for (size_t i = 0; i < items.size(); ++i) {
        bool dup = false;
        if (context0.find(items[i]) != string::npos) {
                dup = true;
        } else {
            for (size_t j = 0; j < items.size(); ++j) {
                if (items[i] == items[j]?
                    i > j
                        : items[j].find(items[i]) != string::npos) {
                    dup = true;
                    break;
                }
            }
        }
        if (!dup) {
            items2.push_back(items[i]);
        }
    }
    return items2;
}

// Table entry used in main solver
const size_t solver_max_item_set = bitset_bits - 8;
struct Solver_entry
{
    uint8_t score : 8;
    bitset_t items : solver_max_item_set;
    bitset_t context;

    Solver_entry()
    {
        score = 0xff;
        items = 0;
        context = 0;
    }
    bool is_empty() const {
        return score == 0xff;
    }
};

// Simple hash table to avoid stdlib overhead
struct Solver_table
{
    vector <Solver_entry> t;
    size_t t_bits;
    size_t size_;
    size_t num_probes_;

    Solver_table()
    {
        // 256 slots initially -- this needs to be not too small
        // so that the load factor formula in update_score works
        t_bits = 8;
        size_ = 0;
        num_probes_ = 0;
        resize(t_bits);
    }
    static size_t entry_hash(bitset_t items, bitset_t context)
    {
        uint64_t h = 0x3141592627182818ULL;
        // Add context first, since its bits are generally
        // less well distributed than items
        h += context;
        h ^= h >> 23;
        h *= 0x2127599bf4325c37ULL;
        h ^= h >> 47;
        h += items;
        h ^= h >> 23;
        h *= 0x2127599bf4325c37ULL;
        h ^= h >> 47;
        return h;
    }
    size_t probe_index(size_t hash) const {
        return hash & ((size_t(1) << t_bits) - 1);
    }
    void resize(size_t t2_bits)
    {
        assert (size_ < size_t(1) << t2_bits);
        vector <Solver_entry> t2(size_t(1) << t2_bits);
        for (auto entry: t) {
            if (!entry.is_empty()) {
                size_t h = entry_hash(entry.items, entry.context);
                size_t mask = (size_t(1) << t2_bits) - 1;
                size_t idx = h & mask;
                while (!t2[idx].is_empty()) {
                    idx = (idx + 1) & mask;
                    ++num_probes_;
                }
                t2[idx] = entry;
            }
        }
        t.swap(t2);
        t_bits = t2_bits;
    }
    uint8_t update_score(bitset_t items, bitset_t context, uint8_t score)
    {
        // Ensure we can insert a new item without resizing
        assert (size_ < t.size());

        size_t index = probe_index(entry_hash(items, context));
        size_t mask = (size_t(1) << t_bits) - 1;
        for (size_t p = 0; p < t.size(); ++p, index = (index + 1) & mask) {
            ++num_probes_;
            if (likely(t[index].items == items && t[index].context == context)) {
                t[index].score = max(t[index].score, score);
                return t[index].score;
            }
            if (t[index].is_empty()) {
                // add entry
                t[index].score = score;
                t[index].items = items;
                t[index].context = context;
                ++size_;
                // load factor 4/5 -- ideally 2-3 average probes per lookup
                if (5*size_ > 4*t.size()) {
                    resize(t_bits + 1);
                }
                return score;
            }
        }
        assert (false && "bug: hash table probe loop");
    }
    size_t size() const {
        return size_;
    }
    void swap(Solver_table table)
    {
        t.swap(table.t);
        ::swap(size_, table.size_);
        ::swap(t_bits, table.t_bits);
        ::swap(num_probes_, table.num_probes_);
    }
};

/*
 * Main solver code.
 */
struct Solver
{
    // Inputs
    vector <string> items;
    string context0;
    size_t context0_index;

    // Mapping between strings and indices
    vector <string> context_to_string;
    unordered_map <string, size_t> string_to_context;

    // Items that have context-free prefixes, i.e. prefixes that
    // never overlap with the end of other items nor context0
    vector <bool> contextfree;

    // Precomputed contexts (suffixes) for each item
    vector <size_t> item_context;
    // Precomputed updates: (context, string) to overlap amount
    vector <vector <size_t>> join_overlap;

    Solver(vector <string> items, string context0)
        :items(items), context0(context0)
    {
        items = dedup_items(context0, items);
        init_context_();
    }

    void init_context_()
    {
        /*
         * Generate all relevant item-item contexts.
         *
         * At this point, we know that no item is a substring of
         * another, nor of context0. This means that the only contexts
         * we need to care about, are those generated from maximal join
         * overlaps between any two items.
         *
         * Proof:
         * Suppose that the shortest containing string needs some other
         * kind of context. Maybe it depends on a context spanning
         * three or more items, say X,Y,Z. But if Z ends after Y and
         * interacts with X, then Y must be a substring of Z.
         * This cannot happen, because we removed all substrings.
         *
         * Alternatively, it depends on a non-maximal join overlap
         * between two strings, say X,Y. But if this overlap does not
         * interact with any other string, then we could maximise it
         * and get a shorter solution. If it does, then call this
         * other string Z. We would get the same contradiction as in
         * the previous case with X,Y,Z.
         */
        size_t N = items.size();
        vector <size_t> max_prefix_overlap(N), max_suffix_overlap(N);
        size_t context0_suffix_overlap = 0;
        for (size_t i = 0; i < N; ++i) {
            for (size_t j = 0; j < N; ++j) {
                if (i == j) continue;
                string joined = join_strings(items[j], items[i]);
                size_t overlap = items[j].size() + items[i].size() - joined.size();
                string context = items[i].substr(0, overlap);
                max_prefix_overlap[i] = max(max_prefix_overlap[i], overlap);
                max_suffix_overlap[j] = max(max_suffix_overlap[j], overlap);

                if (string_to_context.find(context) == string_to_context.end()) {
                    string_to_context[context] = context_to_string.size();
                    context_to_string.push_back(context);
                }
            }

            // Context for initial join with context0
            {
                string joined = join_strings(context0, items[i]);
                size_t overlap = context0.size() + items[i].size() - joined.size();
                string context = items[i].substr(0, overlap);
                max_prefix_overlap[i] = max(max_prefix_overlap[i], overlap);
                context0_suffix_overlap = max(context0_suffix_overlap, overlap);

                if (string_to_context.find(context) == string_to_context.end()) {
                    string_to_context[context] = context_to_string.size();
                    context_to_string.push_back(context);
                }
            }
        }
        // Now compute all canonical trailing contexts
        context0_index = string_to_context[
                           context0.substr(context0.size() - context0_suffix_overlap)];
        item_context.resize(N);
        for (size_t i = 0; i < N; ++i) {
            item_context[i] = string_to_context[
                                items[i].substr(items[i].size() - max_suffix_overlap[i])];
        }

        // Now detect context-free items
        contextfree.resize(N);
        for (size_t i = 0; i < N; ++i) {
            contextfree[i] = (max_prefix_overlap[i] == 0);
            if (contextfree[i]) {
                DEBUG("  contextfree: %s\n", items[i].c_str());
            }
        }

        // Now compute all possible overlap amounts
        join_overlap.resize(context_to_string.size(), vector <size_t> (N));
        for (size_t c_index = 0; c_index < context_to_string.size(); ++c_index) {
            const string& context = context_to_string[c_index];
            for (size_t i = 0; i < N; ++i) {
                string joined = join_strings(context, items[i]);
                size_t overlap = context.size() + items[i].size() - joined.size();
                join_overlap[c_index][i] = overlap;
            }
        }
    }

    // Main solver.
    // Returns length of shortest string containing all items starting
    // from context0 (context0's length not included).
    size_t solve() const
    {
        size_t N = items.size();

        // Length, if joined without overlaps. We try to improve this by
        // finding overlaps in the main iteration
        size_t base_length = 0;
        for (auto s: items) {
            base_length += s.size();
        }

        // Now take non-context-free items. We will only need to search
        // over these items.
        vector <size_t> search_items;
        for (size_t i = 0; i < N; ++i) {
            if (!contextfree[i]) {
                search_items.push_back(i);
            }
        }
        size_t N_search = search_items.size();

        /*
         * Some groups of strings have the same context transitions.
         * For example "17", "107", "127", "167" all have an initial
         * context of "1" and a trailing context of "7", no other
         * overlaps are possible with other primes.
         *
         * We group these strings and treat them as indistinguishable
         * during the main algorithm.
         */
        auto eq_context = [&](size_t i, size_t j) {
            if (item_context[i] != item_context[j]) {
                return false;
            }
            for (size_t ci = 0; ci < context_to_string.size(); ++ci) {
                if (join_overlap[ci][i] != join_overlap[ci][j]) {
                    return false;
                }
            }
            return true;
        };
        vector <size_t> eq_context_group(N_search, size_t(-1));
        for (size_t si = 0; si < N_search; ++si) {
            for (size_t sj = si-1; sj+1 > 0; --sj) {
                size_t i = search_items[si], j = search_items[sj];
                if (!contextfree[j] && eq_context(i, j)) {
                    DEBUG("  eq context: %s =c= %s\n", items[i].c_str(), items[j].c_str());
                    eq_context_group[si] = sj;
                    break;
                }
            }
        }

        // Figure out the combined context size. A combined context has
        // one entry for each context-free item plus one for context0.
        size_t ccontext_size = N - N_search + 1;

        // Assert that various parameters all fit into our data types
        using ccontext_t = bitset_t;
        assert (context_to_string.size() + ccontext_size <= bitset_bits);
        assert (N_search <= solver_max_item_set);
        assert (base_length < 0xff);

        // Initial combined context.
        unordered_map <size_t, size_t> cc0_full;
        ++cc0_full[context0_index];
        for (size_t i = 0; i < N; ++i) {
            if (contextfree[i]) {
                ++cc0_full[item_context[i]];
            }
        }
        // Now pack into unary-encoded bitset. The bitset stores the
        // count for each context as <count> number of 0 bits,
        // followed by a 1 bit.
        ccontext_t cc0 = 0;
        for (size_t ci = 0, b = 0; ci < context_to_string.size(); ++ci, ++b) {
            b += cc0_full[ci];
            cc0 |= ccontext_t(1) << b;
        }

        // Map from (item set, context) to maximum achievable overlap
        Solver_table k_solns;
        // Base case: cc0 with empty set
        k_solns.update_score(0, cc0, 0);

        // Now start dynamic programming. k is current subset size
        size_t eq_context_groups = 0;
        for (size_t g: eq_context_group) eq_context_groups += (g != size_t(-1));
        if (context0.empty()) {
            INFO("solve: N=%zu, N_search=%zu, ccontext_size=%zu, #contexts=%zu, #eq_context_groups=%zu\n",
                 N, N_search, ccontext_size, context_to_string.size(), eq_context_groups);
        } else {
            DEBUG("solve: context=%s, N=%zu, N_search=%zu, ccontext_size=%zu, #contexts=%zu, #eq_context_groups=%zu\n",
                  context0.c_str(), N, N_search, ccontext_size, context_to_string.size(), eq_context_groups);
        }
        for (size_t k = 0; k < N_search; ++k) {
            decltype(k_solns) k1_solns;

            // The main bottleneck of this program is updating k1_solns,
            // which (for larger N) becomes a huge table.
            // We use a prefetch queue to reduce memory latency.
            const size_t prefetch = 8;
            array <Solver_entry, prefetch> entry_queue;
            size_t update_i = 0;

            // Iterate every k-subset
            for (Solver_entry entry: k_solns.t) {
                if (entry.is_empty()) continue;

                bitset_t s = entry.items;
                ccontext_t ccontext = entry.context;
                size_t overlap = entry.score;

                // Try adding a new item
                for (size_t si = 0; si < N_search; ++si) {
                    bitset_t s1 = s | bitset_t(1) << si;
                    if (s == s1) {
                        continue;
                    }
                    // Add items in each eq_context_group sequentially
                    if (eq_context_group[si] != size_t(-1) &&
                        !(s & bitset_t(1) << eq_context_group[si])) {
                        continue;
                    }
                    size_t i = search_items[si]; // actual item index

                    size_t new_context = item_context[i];
                    // Increment ccontext's count for new_context.
                    // We need to find its delimiter 1 bit
                    size_t bit_n = bit_select(ccontext, new_context);
                    ccontext_t ccontext_n =
                        ((ccontext & ((ccontext_t(1) << bit_n) - 1))
                         | ((ccontext >> bit_n << (bit_n + 1))));

                    // Select non-empty sub-contexts to substitute for new_context
                    for (size_t ci = 0, bit1 = 0, count;
                         ci < context_to_string.size();
                         ++ci, bit1 += count + 1)
                    {
                        assert (ccontext_n >> bit1);
                        count = __builtin_ctzll(ccontext_n >> bit1);
                        if (!count
                            // We just added new_context; we can only remove an existing
                            // context entry there i.e. there must be at least two now
                            || (ci == new_context && count < 2)) {
                            continue;
                        }

                        // Decrement ci in ccontext_n
                        bitset_t ccontext1 =
                            ((ccontext_n & ((ccontext_t(1) << bit1) - 1))
                             | ((ccontext_n >> (bit1 + 1)) << bit1));

                        size_t overlap1 = overlap + join_overlap[ci][i];

                        // do previous prefetched update
                        if (update_i >= prefetch) {
                            Solver_entry entry = entry_queue[update_i % prefetch];
                            k1_solns.update_score(entry.items, entry.context, entry.score);
                        }

                        // queue the current update and prefetch
                        Solver_entry entry1;
                        size_t probe_index = k1_solns.probe_index(Solver_table::entry_hash(s1, ccontext1));
                        __builtin_prefetch(&k1_solns.t[probe_index]);
                        entry1.items = s1;
                        entry1.context = ccontext1;
                        entry1.score = overlap1;
                        entry_queue[update_i % prefetch] = entry1;

                        ++update_i;
                    }
                }
            }

            // do remaining queued updates
            for (size_t j = 0; j < min(update_i, prefetch); ++j) {
                Solver_entry entry = entry_queue[j];
                k1_solns.update_score(entry.items, entry.context, entry.score);
            }

            if (context0.empty()) {
                INFO("  hash stats: |solns[%zu]| = %zu, %zu lookups, %zu probes\n",
                     k+1, k1_solns.size(), update_i, k1_solns.num_probes_);
            } else {
                DEBUG("  hash stats: |solns[%zu]| = %zu, %zu lookups, %zu probes\n",
                      k+1, k1_solns.size(), update_i, k1_solns.num_probes_);
            }
            k_solns.swap(k1_solns);
        }

        // Overall solution
        size_t max_overlap = 0;
        for (Solver_entry entry: k_solns.t) {
            if (entry.is_empty()) continue;
            max_overlap = max(max_overlap, size_t(entry.score));
        }
        return base_length - max_overlap;
    }
};

// Wrapper for Solver that also finds the smallest solution string
string smallest_containing_string(vector <string> items)
{
    items = dedup_items("", items);

    size_t soln_length;
    {
        Solver solver(items, "");
        soln_length = solver.solve();
    }
    DEBUG("Found solution length: %zu\n", soln_length);

    string soln;
    vector <string> remaining_items = items;
    while (remaining_items.size() > 1) {
        // Add all possible next items, in lexicographic order
        vector <pair <string, size_t>> next_solns;
        for (size_t i = 0; i < remaining_items.size(); ++i) {
            const string& item = remaining_items[i];
            next_solns.push_back(make_pair(join_strings(soln, item), i));
        }
        assert (next_solns.size() == remaining_items.size());
        sort(next_solns.begin(), next_solns.end());

        // Now try every item in order
        bool found_next = false;
        for (auto ns: next_solns) {
            size_t i;
            string next_soln;
            tie(next_soln, i) = ns;
            DEBUG("Trying: %s + %s -> %s\n",
                  soln.c_str(), remaining_items[i].c_str(), next_soln.c_str());
            vector <string> next_remaining;
            for (size_t j = 0; j < remaining_items.size(); ++j) {
                if (next_soln.find(remaining_items[j]) == string::npos) {
                    next_remaining.push_back(remaining_items[j]);
                }
            }

            Solver solver(next_remaining, next_soln);
            size_t next_size = solver.solve();
            DEBUG("  ... next_size: %zu + %zu =?= %zu\n", next_size, next_soln.size(), soln_length);
            if (next_size + next_soln.size() == soln_length) {
                INFO("  found next item: %s\n", remaining_items[i].c_str());
                soln = next_soln;
                remaining_items = next_remaining;
                // found lexicographically smallest solution, break now
                found_next = true;
                break;
            }
        }
        assert (found_next);
    }
    soln = join_strings(soln, remaining_items[0]);

    return soln;
}

int main()
{
    string prev_soln;
    vector <string> items;
    size_t p = 1;
    for (size_t N = 1;; ++N) {
        for (++p; items.size() < N; ++p) {
            if (is_prime(p)) {
                char buf[99];
                snprintf(buf, sizeof buf, "%zu", p);
                items.push_back(buf);
                break;
            }
        }

        // Try to reuse previous solution (this works for N=11,30,32...)
        string soln;
        if (prev_soln.find(items.back()) != string::npos) {
            soln = prev_soln;
        } else {
            soln = smallest_containing_string(items);
        }
        printf("%s\n", soln.c_str());
        prev_soln = soln;
    }
}

Спробуйте в Інтернеті!

І найголовніша версія TIO . Вибачте, але я не переграв ці програми, і існує обмеження тривалості публікації.


Непов'язане: Замість цього debug_dummyможна використовувати #define DEBUG(x) void(0).
користувач202729

Дивовижний! Я сподівався на відповідь C / C ++. Я спробую запустити його якомога швидше! Скільки оперативної пам’яті у вас на машині? Я спробую максимізувати доступну суму для вашого сценарію, коли я його правильно оцінюю.
maxb

користувач: Я використовую, debug_dummyтому що хочу перевіряти та оцінювати аргументи, навіть коли налагодження вимкнено.
Джаф

@maxb: також 16 Гб. Але N=32мені потрібно лише близько 500 Мб, я думаю.
Джаф

1
Велике поліпшення! Я запускаю його пізніше сьогодні. Код, який ви вставили вище, не включає main, але я знайшов його за посиланням TIO.
maxb

13

JavaScript (Node.js) , оцінка 24 за 241 секунди

Результати

  • а(1)а(21)
  • а(22)=231129413434717353759619679
  • а(23)=23112941343471735359619678379
  • а(1)а(24)

Алгоритм

Це рекурсивний пошук, який намагається здійснити всі можливі способи об'єднання чисел разом, і врешті-решт сортувати отримані списки у лексикографічному порядку, коли буде досягнуто вузла аркуша.

хукхкукукх

На початку кожної ітерації будь-який запис, який можна знайти в іншому записі, видаляється зі списку.

Значне прискорення було досягнуто шляхом відстеження відвіданих вузлів, щоб ми могли робити переривання на ранніх термінах, коли різні операції призводять до одного списку.

Невелике прискорення було досягнуто шляхом оновлення та відновлення списку, коли це можливо, а не створення копії, як це запропонував анонімний користувач Ніл.

Приклад

н=7[2,3,5,7,11,13,17]

[]                        // start with an empty list
[ 2 ]                     // append 2
[ 2, 3 ]                  // append 3
[ 2, 3, 5 ]               // append 5
[ 2, 3, 5, 7 ]            // append 7
[ 2, 3, 5, 7, 11 ]        // append 11
[ 2, 3, 5, 7, 11, 13 ]    // append 13
[ 2, 5, 7, 11, 13 ]       // remove 3, which appears in 13
  [ 2, 5, 7, 113, 13 ]    //   try to merge 11 and 13 into 113
  [ 2, 5, 7, 113 ]        //   remove 13, which now appears in 113
  [ 2, 5, 7, 113, 17 ]    //   append 17
  [ 2, 5, 113, 17 ]       //   remove 7, which appears in 17
  --> leaf node: 1131725  //   new best result
[ 2, 5, 7, 11, 13, 17 ]   // append 17
[ 2, 5, 11, 13, 17 ]      // remove 7, which appears in 17
  [ 2, 5, 113, 13, 17 ]   //   try to merge 11 and 13 into 113
  [ 2, 5, 113, 17 ]       //   remove 13, which now appears in 113
                          //   abort because this node was already visited
                          //   (it was a leaf node anyway, so we don't save much here)
  [ 2, 5, 117, 13, 17 ]   //   try to merge 11 and 17 into 117
  [ 2, 5, 117, 13 ]       //   remove 17, which now appears in 117
  --> leaf node: 1171325  //   not better than the previous one
--> leaf node: 11131725   // not better than the previous one

Код

Спробуйте в Інтернеті!

let f = n => {
  let visited = {},
      a, d, k, best, search;

  // build the list of primes, as strings
  for(a = [ '2' ], n--, k = 3; n; k++) {
    for(d = k; k % (d -= 2);) {}
    d == 1 && n-- && a.push(k + '');
  }

  best = a.join('');

  // recursive search function
  (search = (a, n = 0, r = []) => {
    let x, y, i, j, k, s;

    // remove all entries in r[] that can be found in another entry
    r = r.filter((p, i) => !r.some((q, j) => i != j && ~q.indexOf(p)));

    // abort early if this node was already visited
    if(visited[r]) {
      return;
    }

    // otherwise, mark it as visited
    visited[r] = 1;

    // walk through all distinct pairs (x, y) in r[]
    for(i = 0; i < r.length; i++) {
      for(j = i + 1; j < r.length; j++) {
        x = r[i];
        y = r[j];

        // try to merge x and y if:
        // 1) the first k digits of x equal the last k digits of y
        for(k = 1; x.slice(0, k) == y.slice(-k); k++) {
          r[i] = y + x.slice(k);
          search(a, n, r);
        }

        // or:
        // 2) the first k digits of y equal the last k digits of x
        for(k = 1; y.slice(0, k) == x.slice(-k); k++) {
          r[i] = x + y.slice(k);
          search(a, n, r);
        }
        r[i] = x;
      }
    }

    if(x = a[n]) {
      // there are other primes to process, so go on with the next one
      search(a, n + 1, [...r, x]);
    }
    else {
      // this is a leaf node: see if we've improved our current score
      s = r.join('');

      if(s.length <= best.length) {
        s = r.sort().join('');

        if(s.length < best.length || s < best) {
          best = s;
        }
      }
    }
  })(a);

  return best;
}

2
Хороша робота (18).
ouflak

Чудова відповідь! Я не знаю JavaScript, але алгоритм, здається, відповідає принципам того, що було пов'язано Кевіном Круйссеном. Гарне пояснення алгоритму, легко помітити, що ви знайдете мінімальне значення. Я особисто не робив бенчмаркінг в JS, чи можу я запустити його у своєму браузері чи є інший бажаний спосіб зробити це?
maxb

@maxb Я б не рекомендував запускати це в браузері, оскільки це буде заморожено. Він призначений для запуску з Node.js (як це робиться в TIO).
Арнольд

10

Concorde TSP Solver , оцінка 84 за 299 секунд

Ну… я відчуваю себе дурним за те, що зараз це лише усвідомлюю.

Вся ця річ по суті є проблемою продавця подорожі . Для кожної пари простих чисел pі q, додамо ребро, вага якого кількість цифр , доданих q(видалення перекриваються цифр). Крім того, додайте початкову кромку до кожного простого pваги, вага якого - довжина p. Найкоротший шлях продавця подорожей відповідає довжині найменшого простого номера.

Тоді вирішувач TSP промислового класу, такий як Concorde , зробить коротку роботу над цією проблемою.

Цей запис, мабуть, слід вважати неконкурентним.

Результати

Розв’язувач потрапляє N=350приблизно за 20 процесорних годин. Повні результати занадто довгі для однієї посади в SE, і OEIS все одно не хоче, щоби багато термінів. Ось перші 200:

1 2
2 23
3 235
4 2357
5 112357
6 113257
7 1131725
8 113171925
9 1131719235
10 113171923295
11 113171923295
12 1131719237295
13 11317237294195
14 1131723294194375
15 113172329419437475
16 1131723294194347537
17 113172329419434753759
18 2311329417434753759619
19 231132941743475375961967
20 2311294134347175375961967
21 23112941343471735375961967
22 231129413434717353759619679
23 23112941343471735359619678379
24 2311294134347173535961967837989
25 23112941343471735359619678378979
26 2310112941343471735359619678378979
27 231010329411343471735359619678378979
28 101031071132329417343475359619678378979
29 101031071091132329417343475359619678378979
30 101031071091132329417343475359619678378979
31 101031071091131272329417343475359619678378979
32 101031071091131272329417343475359619678378979
33 10103107109113127137232941734347535961967838979
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961967838979
36 1010310710911312713713914923294151734347535961967838979
37 1010310710911312713713914915157232941734347535961967838979
38 1010310710911312713713914915157163232941734347535961967838979
39 10103107109113127137139149151571631672329417343475359619798389
40 10103107109113127137139149151571631672329417343475359619798389
41 1010310710911312713713914915157163167173232941794347535961978389
42 101031071091131271371391491515716316717323294179434753596181978389
43 101031071091131271371391491515716316723294173434753596181917978389
44 101031071091131271371391491515716316717323294179434753596181919383897
45 10103107109113127137139149151571631671731792329418191934347535961978389
46 10103107109113127137139149151571631671731791819193232941974347535961998389
47 101031071091271313714915157163167173179181919321139232941974347535961998389
48 1010310710912713137149151571631671731791819193211392232941974347535961998389
49 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989
66 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
67 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
68 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
69 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
70 101030710710912713113714915157163139211672233173227722932392417925181919325726326928197283374347534959619989
71 101030710710912713113714915157163139211672233173227722932392417925181919325726337269281972834743534959619989
72 101030710710912713113714915157163139211672233173227722932392417925181919337257263472692819728349435359619989
73 10103071071091271311371491515716313921167223317322772293372392417925181919347257263492692819728353594367619989
74 101030710710912713113714915157163139211672233173227722932392417925181919337347257263492692819728353594367619989
75 1010307107109127131137313914915157163211672233173227722933792392417925181919347257263492692819728353594367619989
76 101030710710912713113731391491515716321167223317322772293379239241792518191934725726349269281972835359438367619989
77 101030710710912713113731391491515716321167223317337922772293472392417925181919349257263535926928197283674383896199
78 1010307107109127131137313914915157163211672233173379227722934723972417925181919349257263535926928197283674383896199
79 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974383896199
80 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974094383896199
81 101030710710912713113731391491515721163223317337922772293472397241916725179257263492692818193535928367401974094383896199
82 1010307107109127131137313914915157223317322772293379239724191634725167257263492692817928353594018193674094211974383896199
83 1010307107109127131137313914922331515722772293379239724191634725167257263492692817353592836740181938389409421197431796199
84 101030710710912713113731391492233151572277229323972419163472516725726349269281735359283674018193838940942119743179433796199
85 101030710710912713113731391492233151572277229323924191634725167257263492692817353592836740181938389409421197431794337943976199
86 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443976199
87 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974496199
88 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974494576199
89 10103071071091271311373139149223315157227722932392419163472516725726349269281735359283674018193838940942119743179433794439744945746199
90 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389
91 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389467
92 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467
93 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
94 101030710710912713113731392233149151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
95 1010307107109127131137313922331491515722772293239241916325167257263479269281734928353594018193674094211974317943379443974499457461994638389467487
96 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389
97 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389509
98 101030710710912713113732233139227722932392419149151572516325726326928167283479401734940942118193535943179433794439744994574619746367467487503838950952199
99 1010307107109127131137322331392277229324191491515725163257263269281672834794017349409421181935359431794337944394499457461974636746748750383895095219952397
100 101030710710922331127131373227722932414915157251632572632692816728347940173494094211394317943379443944994574618191935359463674674875038389509521975239754199
101 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479
102 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479557
103 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389
104 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
105 101030710722331109227127722932413137325149151571632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
106 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569
107 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569587
108 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587
109 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587599
110 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199
111 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199607
112 1010307223311072271092293241277251491515716325726326928167283401734094211313734317943379443944945746139463474674875034995095218191935359367523975419754795577563838956958759960199607
113 22331101030722710722932410925127725714915157263269281632834016740942113137343173433794439449457461394634746748750349950952181919353593675239754197547955775638389569587599601996076179
114 2233110103072271072293241092512571277263269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
115 22331010307227107229324109251257126311277269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
116 22331010307227107229324109251257126311269281277283401491515740942113137343173433794439449457461394634674875034750952163499523975416754795577563535936756958759960181919383896076179619764199
117 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675479557756353593675695875996018191938389607617961976419964397
118 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535936756958759960181919383896076179619764199643976479
119 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535695875935996018191936760761796197641996439764796538389
120 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467487503475095216349952395416754755775635356958760181919359367607617961976419964397647965383896599
121 22331010307227107229324109251257126311269281277283401491515740942113137343173443379449457461394634674875034750952163499523954167547557756353569587601819193593676076179641976439764796538389659966199
122 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346734748750349950952163523954167547557756353569587601819193593676076179641976439764796538389659966199
123 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936776076179641976439764796538389659966199
124 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
125 22331010307227107229324109251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
126 2233101030701072271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
127 223310103070107092271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
128 223310103070107092271092293241251257191263112691277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
129 22331010307010709227109229324125125719126311269127277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
130 223307010103227092293241072510925712631126912719128128340140942113137331491515727743173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
131 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
132 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
133 223307010103227092293241072510925712631126912719128128340140942113137331443173449149457277433794613946346739487503475095215157516349952395416754755775635356958760181935936076179641976439764796536776599661996838389
134 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
135 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
136 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572774337946139463467394875034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
137 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
138 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572773461394634673948743379503475095215157516349952395416754755756353569587577601819359360761796419764397647965367787696599661996838389
139 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389
140 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
141 223307010103227092293241072510925712631126912719128112834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
142 223307010103227092293241072510925712631126912719128112834014094211313733144317344914572773461394634673948743379503475095214952395415157516349954755756353569587577601676076179641935936439764797653677659966197876968383898098218199
143 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727734613946346739487433475034950952149952337954151575163535475575635695875776016760761796419359364396479765367765996619768383898098218199823978769
144 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875773960167607617964193593643964797653677659966197683838980982181998239769827787
145 223070101032270922924107251092571263112691271912811283401409421131373314431734491457274334613946346734748750349509521499523379541515751635354755756356958757739601676076179641935936439647976536599661976836776980982181998239782778782938389
146 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765367765996619768383976980982181998239827787829389
147 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765365996619768367769809821819982397827787829383985389
148 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365996619768367739769809821819982398277829383985389857787
149 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853898577878599
150 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853857787859986389
151 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875760167607617964193593643964797653659661976836773976980982181998239827782938398538577877859986389
152 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383985385778778599863898818199
153 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857787785998638988181998839
154 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
155 2230701010322709072292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
156 22307010103227090722924107251092571263112691127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
157 22307010103227090722924107251092571263112691127191281128340140942113137331443173449193457274334613946346734748750349509521499523379541515475155756353569587576015760761796419764396479765359365966199683676980982163823978277398293838538577859986389881816778778839887
158 2230701010322709072292410725109257126311269112719128112834014092934211313733144317344919345727433461394634673474875034950952149952337954151547515575635356958757601576076179641976439647976535936596619968367698098216382397827739829853838577859986389881816778778839887
159 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
160 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
161 223070101032270907229241072510925712631126911271912811283401409293421131372743144331733449193457461394146346734748750349475095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
162 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139414634673474875034947509521499523373535415154751557563569535875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
163 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503494750952149952337353541515475155756356953587576015760761796419764396479653593797659661996768367698098216382397827739829853838577859986389881816778778839887
164 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397827739829853838577859986389881816778778839887
165 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149952337353541515475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829853838577859986389881816778778839887
166 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
167 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149915152337353541547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
168 2230701010322709072292410725109257126311269112712811283401409293421131372743144331733449145746139414634673474875034947509521499151523373535415475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
169 2230701009070922710103229241072510925712631126911272728112834014092934211313733144317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
170 22307010090709227101310322924107251092571263112691127272811283401409293421134431373317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
171 22307010090709227101310191032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
172 22307010090709227101310191021032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
173 223070100907092271013101910210310722924109251257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
174 223070100907092271013101910210310331107229241092512571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
175 223070100907092271013101910210310331103922924107251092571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
176 223070100907092271013101910210310331103922924104910725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
177 223070100907092271013101910210310331103922924104910510725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
178 223070100907092271013101910210310331103922924104910510610725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
179 223070100907092271013101910210310331103922924104910510610631325107257109263269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
180 223070100907092271013101910210310331103922924104910510610631325106911072571092632692811272728340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
181 223070100907092271013101910210310331103922924104910510610631325106911072571087263269281092834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
182 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109112727283401409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
183 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
184 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
185 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
186 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
187 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094127274211173344317433449457461373463467347487503494750952149919352337515154157547557563535695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
188 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094111727421123344317334494574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
189 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109719283401117274092934211233443131733449411294574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
190 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097192834011172740929342112334431317334494112945743373461374634673474875034947509521139523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881151816778778839887
191 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097192632692811172728340112334092934211294113137334431734494574337461394634673474875034947509521151153523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881816778778839887
192 1009070101307091019102103103310491051061063110392232271069107229241087251091109325710971926326928111727283401123340929342112941131373344317344945743374613946346734748750349475095211511535235354116354751275575635695358757601499193593796076179641976439647976536596619967683676980982157739778239827782983838538578599786389881816778778839887
193 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109711171928340112334092934211294113137274317334433734494574613946346734748750349475095211511535235354127514991935475575635695358757601576076179641976439647965359379765966199676836769809821677397782398277829838385385778599786388181163898839887787
194 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097111719283401123340929342112941131372743173344337344945746139463467347487503494750952115115352353541163547512755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898811816778778839887
195 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097111719263269281123283401129293409411313727421151153443173344945743346139463467347487503494750952116352337353541181187512754755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898816778778839887
196 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
197 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541201275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
198 1009070101307091019102103103310491051061063106910710872231103922710911093229241097111711232511292571926326928113132834011511534092934211634431733449411811872743345746137346346734748750349475095211935233751201213953535412754755756356958757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
199 10090701013070910191021031033104910510610631069107108710911039223110932271097111711232292411292511313257192632692811511532834011634092934211811872743173344334494119345746137346346734748750349475095212012139523375121754127547557563535695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
200 100907010130709101910210310331049105106106310691071087109109311039110971117112322711292292411313251151153257192632692811632834011811872740929342119344317334494120121373457433461394634673474875034947509521217512233752353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887

Код

Ось сценарій Python 3 для виклику вирішувача Concorde знову і знову, поки він не побудує рішення.

Concorde безкоштовний для академічного використання. Ви можете завантажити виконавчий бінарний файл Concorde, побудований за допомогою власного лінійного пакета програмування QSopt, або якщо у вас є якимось чином ліцензія на IBM CPLEX, ви можете побудувати Concorde з джерела для використання CPLEX.

#!/usr/bin/env python3
'''
Find prime containment numbers (OEIS A054261) using the Concorde
TSP solver.

The n-th prime containment number is the smallest natural number
which, when written in decimal, contains the first n primes.
'''

import argparse
import itertools
import os
import sys
import subprocess
import tempfile

def join_strings(a, b):
  '''Shortest string that starts with a and ends with b.'''
  for overlap in range(min(len(a), len(b)), 0, - 1):
    if a[-overlap:] == b[:overlap]:
      return a + b[overlap:]
  return a + b

def is_prime(n):
  if n < 2:
    return False
  d = 2
  while d*d <= n:
    if n % d == 0:
      return False
    d += 1
  return True

def prime_list_reduced(n):
  '''First n primes, with primes that are substrings of other
     primes removed.'''
  primes = []
  p = 2
  while len(primes) < n:
    if is_prime(p):
      primes.append(p)
    p += 1

  reduced = []
  for p in primes:
    if all(p == q or str(p) not in str(q) for q in primes):
      reduced.append(p)
  return reduced

# w_med is an offset for actual weights
# (we use zero as a dummy weight when splitting nodes)
w_med = 10**4
# w_big blocks edges from being taken
w_big = 10**8

def gen_tsplib(prefix, strs, start_candidates):
  '''Generate TSP formulation in TSPLIB format.

     Returns a TSPLIB format string that encodes the length of the
     shortest string starting with 'prefix' and containing all 'strs'.

     start_candidates is the set of strings that solution paths are
     allowed to start with.
     '''
  N = len(strs)

  # Concorde only supports symmetric TSPs. Therefore we encode the
  # asymmetric TSP instances by doubling each node.
  node_in = lambda i: 2*i
  node_out = lambda i: node_in(i) + 1
  # 2*(N+1) nodes because we add an artificial node with index N
  # for the start/end of the tour. This node is also doubled.
  num_nodes = 2*(N+1)

  # Ensure special offsets are big enough
  assert w_med > len(prefix) + sum(map(len, strs))
  assert w_big > w_med * num_nodes

  weight = [[w_big] * num_nodes for _ in range(num_nodes)]
  def edge(src, dest, w):
    weight[node_out(src)][node_in(dest)] = w
    weight[node_in(dest)][node_out(src)] = w

  # link every incoming node with the matching outgoing node
  for i in range(N+1):
    weight[node_in(i)][node_out(i)] = 0
    weight[node_out(i)][node_in(i)] = 0

  for i, p in enumerate(strs):
    if p in start_candidates:
      prefix_w = len(join_strings(prefix, p))
      # Initial length
      edge(N, i, w_med + prefix_w)
    else:
      edge(N, i, w_big)
    # Link every str to the end to allow closed tours
    edge(i, N, w_med)

  for i, p in enumerate(strs):
    for j, q in enumerate(strs):
      if i != j:
        w = len(join_strings(p, q)) - len(p)
        edge(i, j, w_med + w)

  out = '''NAME: prime-containment-number
TYPE: TSP
DIMENSION: %d
EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: FULL_MATRIX
EDGE_WEIGHT_SECTION
''' % num_nodes

  out += '\n'.join(
    ' '.join(str(w) for w in row)
    for row in weight
  ) + '\n'

  out += 'EOF\n'
  return out

def parse_tour_soln(prefix, strs, text):
  '''This constructs the solution from Concorde's 'tour' output format.
     The format simply consists of a permutation of the graph nodes.'''
  N = len(strs)
  node_in = lambda i: 2*i
  node_out = lambda i: node_in(i) + 1
  nums = list(map(int, text.split()))

  # The file starts with the number of nodes
  assert nums[0] == 2*(N+1)
  nums = nums[1:]

  # Then it should list a permutation of all nodes
  assert len(nums) == 2*(N+1)

  # Find and remove the artificial starting point
  start = nums.index(node_out(N))
  nums = nums[start+1:] + nums[:start]
  # Also find and remove the end point
  if nums[-1] == node_in(N):
    nums = nums[:-1]
  elif nums[0] == node_in(N):
    # Tour printed in reverse order
    nums = reversed(nums[1:])
  else:
    assert False, 'bad TSP tour'
  soln = prefix
  for i in nums:
    # each prime appears in two adjacent nodes, pick one arbitrarily
    if i % 2 == 0:
      soln = join_strings(soln, strs[i // 2])
  return soln

def scs_length(prefix, strs, start_candidates, concorde_path, concorde_verbose):
  '''Find length of shortest containing string using one call to Concorde.'''
  # Concorde's small-input solver CCHeldKarp, tends to fail with the
  # cryptic error message 'edge too long'. Brute force instead
  if len(strs) <= 5:
    best = len(prefix) + sum(map(len, strs))
    for perm in itertools.permutations(range(len(strs))):
      if perm and strs[perm[0]] not in start_candidates:
        continue
      soln = prefix
      for i in perm:
        soln = join_strings(soln, strs[i])
      best = min(best, len(soln))
    return best

  with tempfile.TemporaryDirectory() as tempdir:
    concorde_path = os.path.join(os.getcwd(), concorde_path)
    with open(os.path.join(tempdir, 'prime.tsplib'), 'w') as f:
      f.write(gen_tsplib(prefix, strs, start_candidates))

    if concorde_verbose:
      subprocess.check_call([concorde_path, os.path.join(tempdir, 'prime.tsplib')],
                            cwd=tempdir)
    else:
      try:
        subprocess.check_output([concorde_path, os.path.join(tempdir, 'prime.tsplib')],
                                cwd=tempdir, stderr=subprocess.STDOUT)
      except subprocess.CalledProcessError as e:
        print('Concorde exited with error code %d\nOutput log:\n%s' %
              (e.returncode, e.stdout.decode('utf-8', errors='ignore')),
              file=sys.stderr)
        raise

    with open(os.path.join(tempdir, 'prime.sol'), 'r') as f:
      soln = parse_tour_soln(prefix, strs, f.read())
    return len(soln)

# Cache results from previous N's
pcn_solve_cache = {} # (prefix fragment, strs) -> soln

def pcn(n, concorde_path, concorde_verbose):
  '''Find smallest prime containment number for first n primes.'''
  strs = list(map(str, prime_list_reduced(n)))
  target_length = scs_length('', strs, strs, concorde_path, concorde_verbose)

  def solve(prefix, strs, target_length):
    if not strs:
      return prefix

    # Extract part of prefix that is relevant to cache
    prefix_fragment = ''
    for s in strs:
      next_prefix = join_strings(prefix, s)
      overlap = len(prefix) + len(s) - len(next_prefix)
      fragment = prefix[len(prefix) - overlap:]
      if len(fragment) > len(prefix_fragment):
        prefix_fragment = fragment
    fixed_prefix = prefix[:len(prefix) - len(prefix_fragment)]
    assert fixed_prefix + prefix_fragment == prefix

    cache_key = (prefix_fragment, tuple(strs))
    if cache_key in pcn_solve_cache:
      return fixed_prefix + pcn_solve_cache[cache_key]

    # Not in cache, we need to calculate it.
    soln = None

    # Try strings in ascending order until scs_length reports a
    # solution with equal length. That string will be the
    # lexicographically smallest extension of our solution.
    next_prefixes = sorted((join_strings(prefix, s), s)
                           for s in strs)

    # Try first string -- often works
    next_prefix, _ = next_prefixes[0]
    next_prefixes = next_prefixes[1:]
    next_strs = [s for s in strs if s not in next_prefix]
    next_length = scs_length(next_prefix, next_strs, next_strs,
                             concorde_path, concorde_verbose)
    if next_length == target_length:
      soln = solve(next_prefix, next_strs, next_length)
    else:
      # If not, do a weighted binary search on remaining strings
      while len(next_prefixes) > 1:
        split = (len(next_prefixes) + 2) // 3
        group = next_prefixes[:split]
        group_length = scs_length(prefix, strs, [s for _, s in group],
                                  concorde_path, concorde_verbose)
        if group_length == target_length:
          next_prefixes = group
        else:
          next_prefixes = next_prefixes[split:]
      if next_prefixes:
        next_prefix, _ = next_prefixes[0]
        next_strs = [s for s in strs if s not in next_prefix]
        check = True
        # Uncomment if paranoid
        #next_length = scs_length(next_prefix, next_strs, next_strs,
        #                         concorde_path, concorde_verbose)
        #check = (next_length == target_length)
        if check:
          soln = solve(next_prefix, next_strs, target_length)

    assert soln is not None, (
      'solve failed! prefix=%r, strs=%r, target_length=%d' %
      (prefix, strs, target_length))

    pcn_solve_cache[cache_key] = soln[len(fixed_prefix):]
    return soln

  return solve('', strs, target_length)

parser = argparse.ArgumentParser()
parser.add_argument('--concorde', type=str, default='concorde',
                    help='path to Concorde binary')
parser.add_argument('--verbose', action='store_true',
                    help='dump all Concorde output')
parser.add_argument('--start', type=int, metavar='N', default=1,
                    help='start at this N')
parser.add_argument('--end', type=int, metavar='N', default=1000000,
                    help='stop after this N')
parser.add_argument('--one', type=int, metavar='N',
                    help='solve for a single N and exit')

def main():
  opts = parser.parse_args(sys.argv[1:])

  if opts.one is not None:
    opts.start = opts.one
    opts.end = opts.one

  prev_soln = ''
  for n in range(opts.start, opts.end+1):
    primes = map(str, prime_list_reduced(n))
    if all(p in prev_soln for p in primes):
      soln = prev_soln
    else:
      soln = pcn(n, opts.concorde, opts.verbose)

    print('%d %s' % (n, soln))
    sys.stdout.flush()
    prev_soln = soln

if __name__ == '__main__':
  main()

Це просто неймовірно. Оскільки проблема неповна, я знав, що ви можете перетворити її на TSP теоретично. Але прямо використовувати TSP-рішувач - це дуже розумно! Мені доведеться порівняти це пізніше сьогодні, але я впевнений, що це буде найшвидшим рішенням поки що.
maxb

Я також переконався, що обидва ваші рішення дають однаковий результат для перших 62 номерів. Скільки пам'яті вимагає це рішення? Я міг би поставити свій старий ноутбук, щоб він працював на кілька днів, хрумтячи цифрами.
maxb

Я такий же вражений, як і ти. До цього моя ментальна модель вирішувачів TSP обмежувалась сценаріями, які передбачали евклідові екскурсії по містах, аеропортах, складах і т. Д. Пошук цих рядків є складною комбінаторною проблемою (все ваги краю - 1, 2 і 3). Збийте через них скибочки, як тепле масло.
Джаф

Розв'язувач Concorde навіть використовує менше оперативної пам’яті, ніж сценарій Python, який контролює її.
Джаф

Дивовижні результати! Я вже відвідав сайт Concorde через цей виклик, перш ніж ви опублікували це, але тоді все ще думав, що, мабуть, не варто це намагатися. У всякому разі, я впевнений, що OEIS зацікавлений у всіх ваших результатах. Просто наведіть їх як b-файл для отримання результатів, що мають максимум 1000 цифр, і як-файл для більш тривалих результатів.
Крістіан Сіверс

9

Очистити , оцінка 25 за 231 секунди (офіційний рахунок)

Результати

  • 1 < n <= 23за 42 36 секунд на TIO
  • n = 24 (2311294134347173535961967837989)за 32 24 секунди локально
  • n = 25 (23112941343471735359619678378979)за 210 160 секунд локально
  • n = 1щоб n = 25було знайдено за 231 секунд для офіційного балу (під редакцією maxb)

Для цього використовується аналогічний підхід до рішення JS Arnauld, заснований на рекурсивному відхиленні перестановки, використовуючи спеціалізований набір дерев для отримання великої швидкості.

Для кожного прем'єр-міністра, який повинен відповідати кількості:

  1. перевірте, чи є простим підрядком інший прайм, і якщо так, видаліть його
  2. сортуйте поточний список простих підрядів, з'єднайте його та додайте до збалансованого набору дерев
  3. перевірте, чи якісь праймери розміщуються на передній частині будь-яких інших, і якщо так, приєднайтеся до них - ігноруючи суміжні вже впорядковані елементи, які все-таки перевіряються кроком відхилення.

Потім для кожної пари підрядів, до яких ми приєдналися, видаліть будь-які підрядки цієї об'єднаної пари зі списку підрядків та повторіть її.

Після того, як більше жодних підрядків не може бути приєднано до будь-яких інших підрядків на будь-якій частині нашої рекурсії, ми використовуємо вже упорядкований набір дерев для швидкого пошуку найменшого числа, що містить підрядки.

Що потрібно покращити / додати:

  • Відірвіться від проникнення всього простору пошуку, замість цього створіть кандидатів
  • Генерація кандидатів на основі префікса / суфіксу для включення запам'ятовування
  • Багатопотокова, розділена робота над префіксами рівномірно за кількістю потоків

Були великі падіння продуктивності між 19 -> 20та 24 -> 25через повторне оброблення на етапі проби злиття та етапом відхилення кандидата, але вони були виправлені.

Оптимізація:

  • removeOverlap призначений завжди надавати набір підрядів вже в оптимальному порядку
  • uInsertMSpec зменшує check-if-is-member та insert-new-member до одного встановленого проходу
  • containmentNumbersSt перевіряє, чи працює попереднє рішення для нового номера
module main
import StdEnv,StdOverloadedList,_SystemEnumStrict
import Data.List,Data.Func,Data.Maybe,Data.Array
import Text,Text.GenJSON

// adapted from Data.Set to work with a single specific type, and persist uniqueness
:: Set a = Tip | Bin !Int a !.(Set a) !.(Set a)
derive JSONEncode Set
derive JSONDecode Set

delta :== 4
ratio :== 2

:: NumberType :== String

:: SetType :== NumberType

//uSingleton :: SetType -> Set
uSingleton x :== (Bin 1 x Tip Tip)

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uFindMin :: !.(Set .a) -> .a
uFindMin (Bin _ x Tip _) = x
uFindMin (Bin _ _ l _)   = uFindMin l

uSize set :== case set of
	Tip = (0, Tip)
	s=:(Bin sz _ _ _) = (sz, s)
	
uMemberSpec :: String !u:(Set String) -> .(.Bool, v:(Set String)), [u <= v]
uMemberSpec x Tip = (False, Tip)
uMemberSpec x set=:(Bin s y l r)
	| sx < sy || sx == sy && x < y
		# (t, l) = uMemberSpec x l
		= (t, Bin s y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| sx > sy || sx == sy && x > y
		# (t, r) = uMemberSpec x r
		= (t, Bin s y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)
where
	sx = size x
	sy = size y

uInsertM :: !(a a -> .Bool) -> (a u:(Set a) -> v:(.Bool, w:(Set a))), [v u <= w]
uInsertM cmp = uInsertM`
where
	//uInsertM` :: a (Set a) -> (Bool, Set a)
	uInsertM` x Tip = (False, uSingleton x)
	uInsertM` x set=:(Bin _ y l r)
		| cmp x y//sx < sy || sx == sy && x < y
			# (t, l) = uInsertM` x l
			= (t, uBalanceL y l r)
			//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
		| cmp y x//sx > sy || sx == sy && x > y
			# (t, r) = uInsertM` x r
			= (t, uBalanceR y l r)
			//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
		| otherwise = (True, set)
		
uInsertMCmp :: a !u:(Set a) -> .(.Bool, v:(Set a)) | Enum a, [u <= v]
uInsertMCmp x Tip = (False, uSingleton x)
uInsertMCmp x set=:(Bin _ y l r)
	| x < y
		# (t, l) = uInsertMCmp x l
		= (t, uBalanceL y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| x > y
		# (t, r) = uInsertMCmp x r
		= (t, uBalanceR y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)

uInsertMSpec :: NumberType !u:(Set NumberType) -> .(.Bool, v:(Set NumberType)), [u <= v]
uInsertMSpec x Tip = (False, uSingleton x)
uInsertMSpec x set=:(Bin sz y l r)
	| sx < sy || sx == sy && x < y
		#! (t, l) = uInsertMSpec x l
		= (t, uBalanceL y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| sx > sy || sx == sy && x > y
		#! (t, r) = uInsertMSpec x r
		= (t, uBalanceR y l r)
		//= (t, Bin sz y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)
where
	sx = size x
	sy = size y

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uBalanceL :: .a !u:(Set .a) !v:(Set .a) -> w:(Set .a), [v u <= w]
//a .(Set a) .(Set a) -> .(Set a)
uBalanceL x Tip Tip
	= Bin 1 x Tip Tip
uBalanceL x l=:(Bin _ _ Tip Tip) Tip
	= Bin 2 x l Tip
uBalanceL x l=:(Bin _ lx Tip (Bin _ lrx _ _)) Tip
	= Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip)
uBalanceL x l=:(Bin _ lx ll=:(Bin _ _ _ _) Tip) Tip
	= Bin 3 lx ll (Bin 1 x Tip Tip)
uBalanceL x l=:(Bin ls lx ll=:(Bin lls _ _ _) lr=:(Bin lrs lrx lrl lrr)) Tip
	| lrs < ratio*lls
		= Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip)
	# (lrls, lrl) = uSize lrl
	# (lrrs, lrr) = uSize lrr
	| otherwise
		= Bin (1+ls) lrx (Bin (1+lls+lrls) lx ll lrl) (Bin (1+lrrs) x lrr Tip)
uBalanceL x Tip r=:(Bin rs _ _ _)
	= Bin (1+rs) x Tip r
uBalanceL x l=:(Bin ls lx ll=:(Bin lls _ _ _) lr=:(Bin lrs lrx lrl lrr)) r=:(Bin rs _ _ _)
	| ls > delta*rs
		| lrs < ratio*lls
			= Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r)
		# (lrls, lrl) = uSize lrl
		# (lrrs, lrr) = uSize lrr
		| otherwise
			= Bin (1+ls+rs) lrx (Bin (1+lls+lrls) lx ll lrl) (Bin (1+rs+lrrs) x lrr r)
	| otherwise
		= Bin (1+ls+rs) x l r
uBalanceL x l=:(Bin ls _ _ _) r=:(Bin rs _ _ _)
	= Bin (1+ls+rs) x l r

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uBalanceR :: .a !u:(Set .a) !v:(Set .a) -> w:(Set .a), [v u <= w]
uBalanceR x Tip Tip
	= Bin 1 x Tip Tip
uBalanceR x Tip r=:(Bin _ _ Tip Tip)
	= Bin 2 x Tip r
uBalanceR x Tip r=:(Bin _ rx Tip rr=:(Bin _ _ _ _))
	= Bin 3 rx (Bin 1 x Tip Tip) rr
uBalanceR x Tip r=:(Bin _ rx (Bin _ rlx _ _) Tip)
	= Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip)
uBalanceR x Tip r=:(Bin rs rx rl=:(Bin rls rlx rll rlr) rr=:(Bin rrs _ _ _))
	| rls < ratio*rrs
		= Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr
	# (rlls, rll) = uSize rll
	# (rlrs, rlr) = uSize rlr
	| otherwise
		= Bin (1+rs) rlx (Bin (1+rlls) x Tip rll) (Bin (1+rrs+rlrs) rx rlr rr)
uBalanceR x l=:(Bin ls _ _ _) Tip
	= Bin (1+ls) x l Tip
uBalanceR x l=:(Bin ls _ _ _) r=:(Bin rs rx rl=:(Bin rls rlx rll rlr) rr=:(Bin rrs _ _ _))
	| rs > delta*ls
		| rls < ratio*rrs
			= Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr
		# (rlls, rll) = uSize rll
		# (rlrs, rlr) = uSize rlr
		| otherwise
			= Bin (1+ls+rs) rlx (Bin (1+ls+rlls) x l rll) (Bin (1+rrs+rlrs) rx rlr rr)	
	| otherwise
		= Bin (1+ls+rs) x l r
uBalanceR x l=:(Bin ls _ _ _) r=:(Bin rs _ _ _)
	= Bin (1+ls+rs) x l r
		
primes :: [Int]
primes =: [2: [i \\ i <- [3, 5..] | let
		checks :: [Int]
		checks = TakeWhile (\n . i >= n*n) primes
	in All (\n . i rem n <> 0) checks]]

primePrefixes :: [[NumberType]]
primePrefixes =: (Scan removeOverlap [|] [toString p \\ p <- primes])

removeOverlap :: !u:[NumberType] NumberType -> v:[NumberType], [u <= v]
removeOverlap [|] nsub = [|nsub]
removeOverlap [|h: t] nsub
	| indexOf h nsub <> -1
		= removeOverlap t nsub
	| nsub > h
		= [|h: removeOverlap t nsub]
	| otherwise
		= [|nsub, h: Filter (\s = indexOf s nsub == -1) t]

tryMerge :: !NumberType !NumberType -> .Maybe .NumberType
tryMerge a b = first_prefix (max (size a - size b) 0)
where
	sa = size a - 1
	max_len = min sa (size b - 1)
	first_prefix :: !Int -> .Maybe .NumberType
	first_prefix n
		| n > max_len
			= Nothing
		| b%(0,sa-n) == a%(n,sa)
			= Just (a%(0,n-1) +++. b)
		| otherwise
			= first_prefix (inc n)

mergeString :: !NumberType !NumberType -> .NumberType
mergeString a b = first_prefix (max (size a - size b) 0) 
where
	sa = size a - 1
	first_prefix :: !Int -> .NumberType
	first_prefix n
		| b%(0,sa-n) == a%(n,sa)
			= a%(0,n-1) +++. b
		| n == sa
			= a +++. b
		| otherwise
			= first_prefix (inc n)
	
// todo: keep track of merges that we make independent of the resulting whole number
mapCandidatePermsSt :: ![[NumberType]] !u:(Set .NumberType) -> v:(Set NumberType), [u <= v]
mapCandidatePermsSt [|] returnSet = returnSet
mapCandidatePermsSt [h:t] returnSet
	#! (mem, returnSet) = uInsertMSpec (foldl mergeString "" h) returnSet
	= let merges = [removeOverlap h y \\ [x:u=:[_:v]] <- tails h, (Just y) <- Map (tryMerge x) v ++| Map (flip tryMerge x) u]
	in (mapCandidatePermsSt t o if(mem) id (mapCandidatePermsSt merges)) returnSet

containmentNumbersSt =: Tl (containmentNumbersSt` primePrefixes "")
where
	containmentNumbersSt` [p:pref] prev
		| all (\e = indexOf e prev <> -1) p
			= [prev: containmentNumbersSt` pref prev]
		| otherwise
			#! next = uFindMin (mapCandidatePermsSt [p] Tip)
			= [next: containmentNumbersSt` pref next]

minFinder :== (\a b = let sa = size a; sb = size b in if(sa == sb) (a < b) (sa < sb))

Start = [(i, ' ', n, "\n") \\ i <- [1..] & n <- containmentNumbersSt]

Спробуйте в Інтернеті!

Збережіть main.iclі компілюйте з:clm -fusion -b -IL Dynamics -IL StdEnv -IL Platform main

Це створює файл, a.outякий слід запускати як a.out -h <heap_size>M -s <stack_size>M, де <heap_size> + <stack_size>є пам'ять, яка буде використовуватися програмою в мегабайти.
(Я зазвичай встановлюю стек в 50 Мб, але в мене рідко є програми, які навіть так багато використовують)


2

Scala , оцінка 137

Редагувати:

Код тут спрощує проблему.

Таким чином, рішення працює для багатьох входів, але не для всіх.


Оригінальна публікація:

Основна ідея

Простіша проблема

н

По-перше, ми генеруємо набір прайметів і видаляємо всі, які вже є підрядками інших. Тоді ми можемо застосувати кілька правил, тобто якщо є лише одна рядок, що закінчується послідовністю, і лише одна, що починається з тієї самої послідовності, ми можемо їх об'єднати. Іншим було б те, що якщо рядок починається і закінчується тією ж послідовністю (як це робить 101), ми можемо додати / додати її до іншої рядки, не змінюючи її кінців. (Ці правила поступаються лише за певних умов, тому будьте обережні, коли їх застосовувати)

н

О(н4)

н=128

Справжня проблема

к

10103..............
     ^ we want to know this digit

101030нк101031О(нжурнал(н))×час для більш простого алгоритму

Таким чином, якби правил алгоритму, наведених вище, завжди було достатньо, проблема виявилася б не складною для NP.

findSeqн=128

Спробуйте в Інтернеті

н75

Код

import scala.annotation.tailrec

object Better {
  var primeLength: Int = 3
  var knownLengths: Map[(String,List[String]), Int] = Map()

  def main(args: Array[String]): Unit = {
    val start = System.currentTimeMillis()
    var last = ""
    Stream.from(1).foreach { i =>
      primeLength = primeList(i-1).toString.length
      val pcn = if (last.contains(primeList(i-1).toString)) last else calcPrimeContainingNumber(i)
      last = pcn
      if (System.currentTimeMillis() - start > 300 * 1000) // reached the time limit while calculating the last number, so, discard it and exit
        return
      println(i + ": " + pcn)
    }
  }

  def calcPrimeContainingNumber(n: Int): String = {
    val numbers = relevantNumbers(n)
    generateIntegerContainingSeq(numbers, numOfDigitsRequired(numbers, "X"), "X").tail
  }

  def relevantNumbers(n: Int): List[String] = {
    val primesRaw = primeList.take(n)
    val primes = primesRaw.map(_.toString).foldRight(List[String]())((i, l) => if (l.exists(_.contains(i))) l else i +: l)
    primes.sorted
  }

  @tailrec
  def generateIntegerContainingSeq(numbers: List[String], maxDigits: Int, soFar: String): String = {
    if (numbers.isEmpty)
      return soFar
    val nextDigit = (0 to 9).find(i => numOfDigitsRequired(numbers.filterNot((soFar + i).contains), soFar + i) == maxDigits).get
    generateIntegerContainingSeq(numbers.filterNot((soFar + nextDigit).contains), maxDigits, soFar + nextDigit)
  }

  def numOfDigitsRequired(numbers: List[String], soFar: String): Int = {
    soFar.length +
      knownLengths.getOrElse((soFar.takeRight(primeLength - 1), numbers), {
        val len = findAnySeq(soFar :: numbers).length - soFar.length
        knownLengths += (soFar.takeRight(primeLength - 1), numbers) -> len
        len
      })
  }

  def findAnySeq(numbers: List[String]): String = {
    val tails = numbers.flatMap(_.tails.drop(1).toSeq.dropRight(1)).distinct
      .filter(t => numbers.exists(n1 => n1.startsWith(t) && numbers.exists(n2 => n1 != n2 && n2.endsWith(t)))) // require different strings for start & end
      .sorted.sortBy(-_.length)
    val safeTails = tails.filterNot(t1 => tails.exists(t2 => t1 != t2 && t2.contains(t1))) // all those which are not substring of another tail

    @inline def merge(e: String, s: String, i: Int): String = findAnySeq((numbers diff List(e, s)) :+ (e + s.drop(i)))

    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      if (ending.nonEmpty && starting.nonEmpty) {
        if (ending.size == 1 && starting.size == 1 && ending != starting) { // there is really only one way
          return merge(ending.head, starting.head, overlap.length)
        }
        val startingAndEnding = ending.filter(_.startsWith(overlap))
        if (startingAndEnding.nonEmpty && ending.size > 1) {
          return merge(ending.filter(_ != startingAndEnding.head).head, startingAndEnding.head, overlap.length)
        } else if (startingAndEnding.nonEmpty && starting.size > 1) {
          return merge(startingAndEnding.head, starting.filter(_ != startingAndEnding.head).head, overlap.length)
        }
      }
    }

    @inline def startsRelevant(n: String): Boolean = tails.exists(n.startsWith)

    @inline def endsRelevant(n: String): Boolean = tails.exists(n.endsWith)

    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      ending.find(!startsRelevant(_)).foreach { e =>
        starting.find(endsRelevant)
          .orElse(starting.headOption) // if there is no relevant starting, take head (ending is already shown to be irrelevant)
          .foreach { s =>
          return merge(e, s, overlap.length)
        }
      }
      ending.find(startsRelevant).foreach { e =>
        starting.find(!endsRelevant(_)).foreach { s =>
          return merge(e, s, overlap.length)
        }
      }
    }
    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      return ending
        .flatMap(e => starting.filter(_ != e).map(s => merge(e, s, overlap.length)))
        .minBy(_.length)
    }

    if (tails.nonEmpty)
      throw new Error("that was unexpected :( " + numbers)

    numbers.mkString("")
  }


  // 1k primes
  val primeList = Seq(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
    , 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173
    , 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
    , 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409
    , 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541
    , 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659
    , 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809
    , 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941
    , 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069
    , 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223
    , 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373
    , 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511
    , 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657
    , 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811
    , 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987
    , 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129
    , 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287
    , 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423
    , 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617
    , 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741
    , 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903
    , 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079
    , 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257
    , 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413
    , 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571
    , 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727
    , 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907
    , 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057
    , 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231
    , 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409
    , 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583
    , 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751
    , 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937
    , 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087
    , 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279
    , 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443
    , 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639
    , 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791
    , 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939
    , 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133
    , 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301
    , 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473
    , 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673
    , 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833
    , 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997
    , 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207
    , 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411
    , 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561
    , 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723
    , 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919)
}

Як в коментарях зазначив Андерс Касеорг, цей код може повернути неоптимальні (таким чином, неправильні) результати.

Результати

н[1,200]187188189193

1: 2
2: 23
3: 235
4: 2357
5: 112357
6: 113257
7: 1131725
8: 113171925
9: 1131719235
10: 113171923295
11: 113171923295
12: 1131719237295
13: 11317237294195
14: 1131723294194375
15: 113172329419437475
16: 1131723294194347537
17: 113172329419434753759
18: 2311329417434753759619
19: 231132941743475375961967
20: 2311294134347175375961967
21: 23112941343471735375961967
22: 231129413434717353759619679
23: 23112941343471735359619678379
24: 2311294134347173535961967837989
25: 23112941343471735359619678378979
26: 2310112941343471735359619678378979
27: 231010329411343471735359619678378979
28: 101031071132329417343475359619678378979
29: 101031071091132329417343475359619678378979
30: 101031071091132329417343475359619678378979
31: 101031071091131272329417343475359619678378979
32: 101031071091131272329417343475359619678378979
33: 10103107109113127137232941734347535961967838979
34: 10103107109113127137139232941734347535961967838979
35: 10103107109113127137139149232941734347535961967838979
36: 1010310710911312713713914923294151734347535961967838979
37: 1010310710911312713713914915157232941734347535961967838979
38: 1010310710911312713713914915157163232941734347535961967838979
39: 10103107109113127137139149151571631672329417343475359619798389
40: 10103107109113127137139149151571631672329417343475359619798389
41: 1010310710911312713713914915157163167173232941794347535961978389
42: 101031071091131271371391491515716316717323294179434753596181978389
43: 101031071091131271371391491515716316723294173434753596181917978389
44: 101031071091131271371391491515716316717323294179434753596181919383897
45: 10103107109113127137139149151571631671731792329418191934347535961978389
46: 10103107109113127137139149151571631671731791819193232941974347535961998389
47: 101031071091271313714915157163167173179181919321139232941974347535961998389
48: 1010310710912713137149151571631671731791819193211392232941974347535961998389
49: 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50: 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51: 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52: 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53: 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54: 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55: 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56: 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57: 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58: 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59: 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60: 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61: 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62: 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63: 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64: 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65: 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989
66: 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
67: 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
68: 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
69: 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
70: 101030710710912713113714915157163139211672233173227722932392417925181919325726326928197283374347534959619989
71: 101030710710912713113714915157163139211672233173227722932392417925181919325726337269281972834743534959619989
72: 101030710710912713113714915157163139211672233173227722932392417925181919337257263472692819728349435359619989
73: 10103071071091271311371491515716313921167223317322772293372392417925181919347257263492692819728353594367619989
74: 101030710710912713113714915157163139211672233173227722932392417925181919337347257263492692819728353594367619989
75: 1010307107109127131137313914915157163211672233173227722933792392417925181919347257263492692819728353594367619989
76: 101030710710912713113731391491515716321167223317322772293379239241792518191934725726349269281972835359438367619989
77: 101030710710912713113731391491515716321167223317337922772293472392417925181919349257263535926928197283674383896199
78: 1010307107109127131137313914915157163211672233173379227722934723972417925181919349257263535926928197283674383896199
79: 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974383896199
80: 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974094383896199
81: 101030710710912713113731391491515721163223317337922772293472397241916725179257263492692818193535928367401974094383896199
82: 1010307107109127131137313914915157223317322772293379239724191634725167257263492692817928353594018193674094211974383896199
83: 1010307107109127131137313914922331515722772293379239724191634725167257263492692817353592836740181938389409421197431796199
84: 101030710710912713113731391492233151572277229323972419163472516725726349269281735359283674018193838940942119743179433796199
85: 101030710710912713113731391492233151572277229323924191634725167257263492692817353592836740181938389409421197431794337943976199
86: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443976199
87: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974496199
88: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974494576199
89: 10103071071091271311373139149223315157227722932392419163472516725726349269281735359283674018193838940942119743179433794439744945746199
90: 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389
91: 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389467
92: 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467
93: 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
94: 101030710710912713113731392233149151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
95: 1010307107109127131137313922331491515722772293239241916325167257263479269281734928353594018193674094211974317943379443974499457461994638389467487
96: 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389
97: 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389509
98: 101030710710912713113732233139227722932392419149151572516325726326928167283479401734940942118193535943179433794439744994574619746367467487503838950952199
99: 1010307107109127131137322331392277229324191491515725163257263269281672834794017349409421181935359431794337944394499457461974636746748750383895095219952397
100: 101030710710922331127131373227722932414915157251632572632692816728347940173494094211394317943379443944994574618191935359463674674875038389509521975239754199
101: 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479
102: 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479557
103: 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389
104: 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
105: 101030710722331109227127722932413137325149151571632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
106: 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569
107: 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569587
108: 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587
109: 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587599
110: 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199
111: 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199607
112: 1010307223311072271092293241277251491515716325726326928167283401734094211313734317943379443944945746139463474674875034995095218191935359367523975419754795577563838956958759960199607
113: 22331101030722710722932410925127725714915157263269281632834016740942113137343173433794439449457461394634746748750349950952181919353593675239754197547955775638389569587599601996076179
114: 2233110103072271072293241092512571277263269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
115: 22331010307227107229324109251257126311277269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
116: 22331010307227107229324109251257126311269281277283401491515740942113137343173433794439449457461394634674875034750952163499523975416754795577563535936756958759960181919383896076179619764199
117: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675479557756353593675695875996018191938389607617961976419964397
118: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535936756958759960181919383896076179619764199643976479
119: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535695875935996018191936760761796197641996439764796538389
120: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467487503475095216349952395416754755775635356958760181919359367607617961976419964397647965383896599
121: 22331010307227107229324109251257126311269281277283401491515740942113137343173443379449457461394634674875034750952163499523954167547557756353569587601819193593676076179641976439764796538389659966199
122: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346734748750349950952163523954167547557756353569587601819193593676076179641976439764796538389659966199
123: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936776076179641976439764796538389659966199
124: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
125: 22331010307227107229324109251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
126: 2233101030701072271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
127: 223310103070107092271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
128: 223310103070107092271092293241251257191263112691277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
129: 22331010307010709227109229324125125719126311269127277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
130: 223307010103227092293241072510925712631126912719128128340140942113137331491515727743173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
131: 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
132: 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
133: 223307010103227092293241072510925712631126912719128128340140942113137331443173449149457277433794613946346739487503475095215157516349952395416754755775635356958760181935936076179641976439764796536776599661996838389
134: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
135: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
136: 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572774337946139463467394875034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
137: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
138: 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572773461394634673948743379503475095215157516349952395416754755756353569587577601819359360761796419764397647965367787696599661996838389
139: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389
140: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
141: 223307010103227092293241072510925712631126912719128112834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
142: 223307010103227092293241072510925712631126912719128112834014094211313733144317344914572773461394634673948743379503475095214952395415157516349954755756353569587577601676076179641935936439764797653677659966197876968383898098218199
143: 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727734613946346739487433475034950952149952337954151575163535475575635695875776016760761796419359364396479765367765996619768383898098218199823978769
144: 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875773960167607617964193593643964797653677659966197683838980982181998239769827787
145: 223070101032270922924107251092571263112691271912811283401409421131373314431734491457274334613946346734748750349509521499523379541515751635354755756356958757739601676076179641935936439647976536599661976836776980982181998239782778782938389
146: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765367765996619768383976980982181998239827787829389
147: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765365996619768367769809821819982397827787829383985389
148: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365996619768367739769809821819982398277829383985389857787
149: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853898577878599
150: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853857787859986389
151: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875760167607617964193593643964797653659661976836773976980982181998239827782938398538577877859986389
152: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383985385778778599863898818199
153: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857787785998638988181998839
154: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
155: 2230701010322709072292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
156: 22307010103227090722924107251092571263112691127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
157: 22307010103227090722924107251092571263112691127191281128340140942113137331443173449193457274334613946346734748750349509521499523379541515475155756353569587576015760761796419764396479765359365966199683676980982163823978277398293838538577859986389881816778778839887
158: 2230701010322709072292410725109257126311269112719128112834014092934211313733144317344919345727433461394634673474875034950952149952337954151547515575635356958757601576076179641976439647976535936596619968367698098216382397827739829853838577859986389881816778778839887
159: 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
160: 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
161: 223070101032270907229241072510925712631126911271912811283401409293421131372743144331733449193457461394146346734748750349475095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
162: 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139414634673474875034947509521499523373535415154751557563569535875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
163: 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503494750952149952337353541515475155756356953587576015760761796419764396479653593797659661996768367698098216382397827739829853838577859986389881816778778839887
164: 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397827739829853838577859986389881816778778839887
165: 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149952337353541515475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829853838577859986389881816778778839887
166: 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
167: 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149915152337353541547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
168: 2230701010322709072292410725109257126311269112712811283401409293421131372743144331733449145746139414634673474875034947509521499151523373535415475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
169: 2230701009070922710103229241072510925712631126911272728112834014092934211313733144317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
170: 22307010090709227101310322924107251092571263112691127272811283401409293421134431373317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
171: 22307010090709227101310191032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
172: 22307010090709227101310191021032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
173: 223070100907092271013101910210310722924109251257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
174: 223070100907092271013101910210310331107229241092512571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
175: 223070100907092271013101910210310331103922924107251092571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
176: 223070100907092271013101910210310331103922924104910725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
177: 223070100907092271013101910210310331103922924104910510725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
178: 223070100907092271013101910210310331103922924104910510610725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
179: 223070100907092271013101910210310331103922924104910510610631325107257109263269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
180: 223070100907092271013101910210310331103922924104910510610631325106911072571092632692811272728340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
181: 223070100907092271013101910210310331103922924104910510610631325106911072571087263269281092834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
182: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109112727283401409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
183: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
184: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
185: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
186: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
187: 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094127274211173344317433449457461373463467347487503494750952149919352337515154157547557563535695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
188: 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094111727421123344317334494574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
189: 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109719283401117274092934211233443131733449411294574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
190: 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097192834011172740929342112334431317334494112945743373461374634673474875034947509521139523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881151816778778839887
191: 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097192632692811172728340112334092934211294113137334431734494574337461394634673474875034947509521151153523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881816778778839887
192: 1009070101307091019102103103310491051061063110392232271069107229241087251091109325710971926326928111727283401123340929342112941131373344317344945743374613946346734748750349475095211511535235354116354751275575635695358757601499193593796076179641976439647976536596619967683676980982157739778239827782983838538578599786389881816778778839887
193: 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109711171928340112334092934211294113137274317334433734494574613946346734748750349475095211511535235354127514991935475575635695358757601576076179641976439647965359379765966199676836769809821811638239773982778298383853857785997863898816778778839887
194: 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097111719283401123340929342112941131372743173344337344945746139463467347487503494750952115115352353541163547512755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898811816778778839887
195: 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097111719263269281123283401129293409411313727421151153443173344945743346139463467347487503494750952116352337353541181187512754755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898816778778839887
196: 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
197: 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541201275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
198: 1009070101307091019102103103310491051061063106910710872231103922710911093229241097111711232511292571926326928113132834011511534092934211634431733449411811872743345746137346346734748750349475095211935233751201213953535412754755756356958757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
199: 10090701013070910191021031033104910510610631069107108710911039223110932271097111711232292411292511313257192632692811511532834011634092934211811872743173344334494119345746137346346734748750349475095212012139523375121754127547557563535695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
200: 100907010130709101910210310331049105106106310691071087109109311039110971117112322711292292411313251151153257192632692811632834011811872740929342119344317334494120121373457433461394634673474875034947509521217512233752353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
201: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112922711313241151153251163257192632692811811872728340120121373340929342119344317344941217433457461394634673474875034947509521223375122952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
202: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112922711313241151153251163257192632692811811872728340120121373340929342119344317344941217433457461394634673474875034947509521223375122952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
203: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113132271151153241163251181187257192632692812012137272834012173340929342119344317433449412233734574613946346734748750349475095212295235354123751275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
204: 100907010130709101910210310331049105106106310691071087109109311039110971117112311291131151153132271163241181187251201213725719263269281217272834012233409293421193443173344941229457433734613946346734748750349475095212375124952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
205: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163132271181187241201213725121725719263269281223283401229293409412372742119344317334494574334613946346734748750349475095212495233735354125937953547512755756356958757601499196076179641976439647976535965966199676836769809821577397782398277829838385385785997863898816778778839887
206: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163132271181187241201213725121725719263269281223283401229293409412372742119344317334494574334613946346734748750349475095212495233735354125937953547512773955756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
207: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113115115311631181187227120121313724121725122325719263269281229283401237274092934211934431733449412494574334613946346734748750349475095212593735233795353541277395475127955756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
208: 100907010130709101910210310331049105106106310691071087109109311039110971117112311291131151153116311811871201213137227121724122325122925719263269281237274012492934094125934211937334431734494574334613946346734748750349475095212773952337953535412795475128355756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
209: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163118118712012131217227122313724122925123725719263269281249293401259340941277274211937334431734494574334613946346734748750349475095212795233795353541283547512895575635695875760149919607617964197643964797653596596619967683676980982157739778239827829838385385785997863898816778778839887
210: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163118118712012131217227122313724122925123725719263269281249293401259340941277274211937334431734494574334613946346734748750349475095212795233795353541283547512895575635695875760149919607617964197643964797653596596619967683676980982157739778239827829838385385785997863898816778778839887
211: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113115115311631181187120121312171223137227122924123725124925719263269281259293401277274094127942119344317334494574334613946346734748750349475095212835233735354128953547512975575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
212: 100907010130101910210310330709104910510610631069107108710910931103911097111711231129113115115311631181187120121312171223227122924123725124925719263269281259293401277274094127942119344313733173449457433461394634673474875034947509521283523375128953535412975475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
213: 10090701013010191021031033070910491051061063106910710871091093110391109711171123112911303115115311631181187120121312171223227122924123725124925719263269281259293401277274094127942119344313733173449457433461394634673474875034947509521283523375128953535412975475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
214: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312292271237241249251259257192632692812772740127929340941283421193443131733449457433461373463467347487503494750952128952337512975413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
215: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229227123724124925125925719263131926928127727401279293409412834211934431733449457433461373463467347487503494750952128952337512975413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
216: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229227123724124925125925719263131926928127727401279293409412834211934431733449457433461321289463467347487503494750952129751373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
217: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237227124924125925127725719263131926928127929340128340941289421193443173344945727433461321297463467347487503494750952132751373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
218: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237227124924125925127725719263131926928127929340128340941289421193443173344945727433461297463467347487503494750952132132751361373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
219: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
220: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
221: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754138139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
222: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237124922712592412772512792571926313192692812834012892934094129727421193443173344945743346132132746346734748750349475095213613675137352337541381399195353547557563569587576014996076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887

Відомо, що найкоротша загальна проблема наслідків є повною NP , тому алгоритм часу, що не відслідковує багаточлен, не може працювати у всіх випадках, якщо його правильність не залежить від певної властивості розподілу простих чисел (або P = NP).
Андерс Касеорг

н>>0н=128

1
Враховуючи такі застереження, як "більшість часу" та "знайдено поки що", чи можете ви пояснити, чому ми повинні вірити, що ваш результат правильний? Як ви можете бути впевнені, що одне з ваших локальних спрощень не завадить вам знайти глобальний оптимум?
Андерс Касеорг

4
Наприклад: якщо ви заміните перші три прості числа з 1234, 3423, 2345, ви створюєте 123453423замість оптимального 12342345.
Андерс Касеорг

1
Крім того, ось 3-розрядний випадок проблеми: 457, 571, 757(усі проліски). findSeqповернеться 7574571за це, але найкоротша довжина 457571. Тож ваш підхід грає з вогнем. Однак, прихильний до чистої сміливості.
Джаф
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.