Haskell , 1165 1065 1053 байт
Байти збереглися завдяки Леву Тененбауму
n=Nothing
x?y=Just(x,y)
o(x,y)=x<0||y<0||x>7||y>7
m#k@(x,y)|o k=n|1>0=m!!x!!y
z(x,y)m p(a,b)|o(x+a,y+b)=1<0|Just g<-m#(x+a,y+b)=elem g[(p,0),(5,0)]|1>0=z(x+a,y+b)m p(a,b)
t(x,y)p(a,b)m|o(x+a,y+b)=[]|g<-(x+a,y+b)=(g%p)m++do[0|m#g==n];t g p(a,b)m
c m|(x,y):_<-[(a,b)|a<-u,b<-u,m#(a,b)==6?1],k<-z(x,y)m=or$[m#(x+a,y+b)==6?0|a<-0:s,b<-0:s]++do a<-s;[k 3(a,b)|b<-s]++(k 2<$>[(a,0),(0,a)])++[m#l==4?0|b<-[2,-2],l<-[(x+a,y+b),(x+b,y+a)]]++[m#(x-1,y+a)==p?0|p<-[0,1]]
c m=1>0
(k%p)m=[[[([p|a==k]++[m#a])!!0|a<-(,)b<$>u]|b<-u]|not$o k]
w(Just(_,1))=1<0
w x=1>0
m!u@(x,y)|g<-m#u,Just(q,1)<-g,v<-((u%n)m>>=),r<-v.t u g,k<-(do[0|n==m#(x+1,y)];(u%n)m>>=(x+1,y)%g)++(do a<-s;[0|n<m#(x+1,y+a)];v$(x+1,y+a)%g)++(do[0|(x,n,n)==(1,m#(x+1,y),m#(x+2,y))];v$(x+2,y)%g)++(do a<-s;[0|1?0==m#(x,y+a)];v((x,y+a)%n)>>=(x+1,y+a)%g)=[k,k,do a<-s;[(a,0),(0,a)]>>=r,do a<-s;b<-s;r(a,b),do a<-s;b<-[2,-2];l<-[(x+a,y+b),(x+b,y+a)];v$l%g,do a<-0:s;b<-[0|a/=0]++s;r(a,b),do a<-[x-1..x+1];b<-[y-1..y+1];[0|w$m#(a,b)];v$(a,b)%g]!!q
m!u=[]
u=[0..7]
s=[1,-1]
q m=all c$m:do a<-u;b<-u;m!(a,b)
Спробуйте в Інтернеті!
Це не зовсім добре гольф, як зараз, але це початок. З деякою допомогою в дорозі я зараз гольфував це досить агресивно (і виправляв помилку на цьому шляху).
Єдине, що може викликати сумніви, це те, що він передбачає, що, окрім короля чи пішака, не може вийти з-під контролю, захопивши один із своїх творів. У шахах вам не дозволяється робити цей крок, але моя програма вважає ці кроки для збереження байтів, припускаючи, що якщо ви перебуваєте в перевірці, це ніколи не зможе вас позбутися.
Це припущення справедливе тому, що такі кроки
Неможливо захопити шматок, який атакує короля, оскільки шматок, який вони захоплюють, чорний.
Неможливо перекрити шлях шматка, який нападає на короля, оскільки захоплений чорний шматок уже робив би це.
Ми також додаємо додаткове умова, що якщо у вас немає короля, ви перебуваєте в чеку.
Ця програма також припускає, що якщо є пішак, яку можна захопити за пасією, то пішак був останнім шматочком, який рухався, і цей крок був законним кроком. Це тому, що програма не перевіряє, чи квадрат, по якому він переміщує чорну пішачку, порожній, тому, якщо там є шматок, речі можуть трохи заграти. Однак цього неможливо отримати, якщо останній крок був законним кроком і, крім того, не може бути представлений у FEN . Тож це припущення здається досить твердим.
Ось моя "безгольова" версія для довідки:
import Control.Monad
out(x,y)=x<0||y<0||x>7||y>7
at b (x,y)
|out(x,y)=Nothing
|otherwise=(b!!x)!!y
inLine (x,y) ps m (a,b)
| out (x+a,y+b) = False
| elem (m `at` (x+a,y+b)) $ Just <$> ps = True
| m `at` (x+a,y+b) == Nothing = inLine (x+a,y+b) ps m (a,b)
| otherwise = False
goLine (x,y) p (a,b)m
| out (x+a,y+b) = []
| otherwise = case m `at` (x+a,y+b) of
-- Just (n,1) -> []
Just (n,_) -> set(x+a,y+b)p m
Nothing -> set(x+a,y+b)p m ++ goLine(x+a,y+b)p(a,b)m
checkBishop (x,y) m=or[inLine(x,y)[(3,0),(5,0)]m(a,b)|a<-[1,-1],b<-[1,-1]]
checkRook (x,y) m=or$do
a<-[1,-1]
inLine(x,y)[(2,0),(5,0)]m<$>[(a,0),(0,a)]
checkKnight (x,y) m=any((==Just(4,0)).(at m))$do
a<-[1,-1]
b<-[2,-2]
[(x+a,y+b),(x+b,y+a)]
checkPawn (x,y) m=or[at m a==Just(p,0)|a<-[(x-1,y+1),(x-1,y-1)],p<-[0,1]]
checkKing (x,y) m=or[at m(a,b)==Just(6,0)|a<-[x-1..x+1],b<-[y-1..y+1]]
check m
| u:_<-[(a,b)|a<-[0..7],b<-[0..7],(m!!a)!!b==Just(6,1)] =
checkBishop u m ||
checkRook u m ||
checkKnight u m ||
checkPawn u m ||
checkKing u m
| otherwise = True
set (x,y) p m=[[[head$[p|(a,b)==(y,x)]++[(m!!b)!!a]|a<-[0..7]]|b<-[0..7]]|not$out(x,y)]
white(Just(n,0))=True
white x=False
moves m (x,y)
|g<-m `at` (x,y)=case g of
Just(2,1) -> do
a<-[1,-1]
b<-[(a,0),(0,a)]
set(x,y)Nothing m>>=goLine (x,y) g b
Just(3,1) -> do
a<-[1,-1]
b<-[1,-1]
set(x,y)Nothing m>>=goLine (x,y) g(a,b)
Just(4,1) -> do
n<-set(x,y)Nothing m
a<-[1,-1]
b<-[2,-2]
l<-[(x+a,y+b),(x+b,y+a)]
-- guard$white$n `at` l
set l g n
Just(5,1) -> do
a<-[1,-1]
c<-[(a,0),(0,a),(a,1),(a,-1)]
set(x,y)Nothing m>>=goLine (x,y) g c
Just(6,1) -> do
a<-[x-1..y+1]
b<-[x-1..y+1]
guard$white(m `at`(a,b))||Nothing==m`at`(a,b)
set(x,y)Nothing m>>=set(a,b)g
Just(n,1) -> (do
guard$Nothing==m `at` (x+1,y)
set(x,y)Nothing m>>=set(x+1,y)g) ++ (do
a<-[1,-1]
guard$white$m`at`(x+1,y+a)
set(x,y)Nothing m>>=set(x+1,y+a)g) ++ (do
guard$(x,Nothing,Nothing)==(1,m`at`(x+1,y),m`at`(x+1,y))
set(x,y)Nothing m>>=set(x+2,y)g) ++ (do
a<-[1,-1]
guard$Just(1,0)==m`at`(x,y+a)
set(x,y)Nothing m>>=set(x,y+a)Nothing>>=set(x+1,y+a)g)
_ -> []
checkmate m=all check$m:do
a<-[0..7]
b<-[0..7]
moves m(a,b)
Спробуйте в Інтернеті!