Створіть AI фарбу для затоплення


34

У грі Flood Paint мета гри полягає в тому, щоб вся дошка була однакового кольору за якомога менше обертів.

Гра починається з дошки, яка виглядає приблизно так:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 5 5 5 4 1 4
6 2 5 3[3]1 1 6 6
5 5 1 2 5 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

Наразі число (що представляє колір) у центрі дошки - 3. Кожен виток, квадрат у центрі змінить колір, і всі квадрати одного кольору, які можна досягти від центру, рухаючись по горизонталі чи вертикалі ( тобто в області затоплення центральної площі) буде змінювати кольори. Тож якщо центральна площа змінить колір на 5:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 5 5 5 4 1 4
6 2 5 5[5]1 1 6 6
5 5 1 2 5 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

то 3, що знаходився зліва від центру 3, також змінить колір. Зараз усього до семи 5 доступні від центральної, і якщо ми потім змінимо колір на 4:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 4 4 4 4 1 4
6 2 4 4[4]1 1 6 6
5 5 1 2 4 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

пофарбована область знову різко збільшується в розмірах.

Ваше завдання - створити програму, яка сприймає сітку кольорів 19 на 19 від 1 до 6 в будь-якій формі, яку ви обрали:

4 5 1 1 2 2 1 6 2 6 3 4 2 3 2 3 1 6 3
4 2 6 3 4 4 5 6 4 4 5 3 3 3 3 5 4 3 4
2 3 5 2 2 5 5 1 2 6 2 6 6 2 1 6 6 1 2
4 6 5 5 5 5 4 1 6 6 3 2 6 4 2 6 3 6 6
1 6 4 4 4 4 6 4 2 5 5 3 2 2 4 1 5 2 5
1 6 2 1 5 1 6 4 4 1 5 1 3 4 5 2 3 4 1
3 3 5 3 2 2 2 4 2 1 6 6 6 6 1 4 5 2 5
1 6 1 3 2 4 1 3 3 4 6 5 1 5 5 3 4 3 3
4 4 1 5 5 1 4 6 3 3 4 5 5 6 1 6 2 6 4
1 4 2 5 6 5 5 3 2 5 5 5 3 6 1 4 4 6 6
4 6 6 2 6 6 2 4 2 6 1 5 6 2 3 3 4 3 6
6 1 3 6 3 5 5 3 6 1 3 4 4 5 1 2 6 4 3
2 6 1 3 2 4 2 6 1 1 5 2 6 6 6 6 3 3 3
3 4 5 4 6 6 3 3 4 1 1 6 4 5 1 3 4 1 2
4 2 6 4 1 5 3 6 4 3 4 5 4 2 1 1 4 1 1
4 2 4 1 5 2 2 3 6 6 6 5 2 5 4 5 4 5 1
5 6 2 3 4 6 5 4 1 3 2 3 2 1 3 6 2 2 4
6 5 4 1 3 2 2 1 1 1 6 1 2 6 2 5 6 4 5
5 1 1 4 2 6 2 5 6 1 3 3 4 1 6 1 2 1 2

і повертайте послідовність кольорів, які центральна площа буде змінюватися щоразу, знову у форматі, який ви вибрали:

263142421236425431645152623645465646213545631465

В кінці кожної послідовності рухів квадрати в сітці 19 на 19 повинні бути одного кольору.

Ваша програма повинна бути повністю детермінованою; дозволяються псевдовипадкові рішення, але програма повинна кожного разу генерувати один і той же результат для одного і того ж тестового випадку.

Програма-переможець зробить найменшу загальну кількість кроків, щоб вирішити всі 100 000 тестових випадків, знайдених у цьому файлі (заархівований текстовий файл, 14,23 МБ). Якщо два рішення будуть робити однакову кількість кроків (наприклад, якщо вони обидва знайшли оптимальну стратегію), коротша програма виграє.


BurntPizza написав програму на Java для перевірки результатів тестів. Щоб скористатися цією програмою, запустіть подання та передайте висновок у файл, який називається steps.txt. Потім запустіть цю програму steps.txtі floodtestфайл в тому ж каталозі. Якщо ваш запис дійсний і виробляє правильні рішення для всіх файлів, він повинен пройти всі тести та повернутисяAll boards solved successfully.

import java.io.*;
import java.util.*;

public class PainterVerifier {

    public static void main(String[] args) throws FileNotFoundException {

        char[] board = new char[361];

        Scanner s = new Scanner(new File("steps.txt"));
        Scanner b = new Scanner(new File("floodtest"));

        int lineNum = 0;

        caseloop: while (b.hasNextLine()) {

            for (int l = 0; l < 19; l++) {
                String lineb = b.nextLine();
                if (lineb.isEmpty())
                    continue caseloop;
                System.arraycopy(lineb.toCharArray(), 0, board, l * 19, 19);
            }

            String line = s.nextLine();
            if (line.isEmpty())
                continue;
            char[] steps = line.toCharArray();

            Stack<Integer> nodes = new Stack<Integer>();

            for (char c : steps) {
                char targetColor = board[180];
                char replacementColor = c;

                nodes.push(180);

                while (!nodes.empty()) {
                    int n = nodes.pop();
                    if (n < 0 || n > 360)
                        continue;
                    if (board[n] == targetColor) {
                        board[n] = replacementColor;
                        if (n % 19 > 0)
                            nodes.push(n - 1);
                        if (n % 19 < 18)
                            nodes.push(n + 1);
                        if (n / 19 > 0)
                            nodes.push(n - 19);
                        if (n / 19 < 18)
                            nodes.push(n + 19);
                    }
                }
            }
            char center = board[180];
            for (char c : board)
                if (c != center) {
                    s.close();
                    b.close();

                    System.out.println("\nIncomplete board found!\n\tOn line " + lineNum + " of steps.txt");
                    System.exit(0);
                }

            if (lineNum % 5000 == 0)
                System.out.printf("Verification %d%c complete...\n", lineNum * 100 / 100000, '%');

            lineNum++;
        }
        s.close();
        b.close();
        System.out.println("All boards solved successfully.");
    }
}

Крім того, табло, оскільки результати насправді не сортуються за балами, і тут насправді важливо багато:

  1. 1,985,078 - smack42, Java
  2. 2,075,452 - user1502040, C
  3. 2,098,382 - тигру, C #
  4. 2155,834 - CoderTao, C #
  5. 2,201,995 - MrBackend, Java
  6. 2,383,569 - CoderTao, C #
  7. 2,384,020 - Гержан, С
  8. 2,403,189 - Origineil, Java
  9. 2,445,761 - Гержан, С
  10. 2,475,056 - Список Джеремі, Хаскелл
  11. 2,480,714 - SteelTermite, C (2395 байт)
  12. 2,480,714 - Herjan, Java (4,702 байт)
  13. 2,588,847 - BurntPizza, Java (2,748 байт)
  14. 2,588,847 - Gero3, node.js (4,641 байт)
  15. 2 799 145 - Teun Pronk, Delphi XE3
  16. 4,780,841 - BurntPizza, Java
  17. 10 800 000 - Джо З., Пітон

2
Судячи з вашого власного подання, результат насправді не повинен містити пробілів?
Мартін Ендер

5
Варто зазначити, що вхідні дані тестування не мають пробілів між числами.
nderscore

3
Ви все ще можете це написати. Якщо це підбиває поточного переможця, я зміню прийняту відповідь.
Джо З.

4
Обмеження в часі полягає в тому, що "для його запуску та розміщення фактичних результатів тут потрібно бути досить швидким".
Джо З.

2
@AlexanderRevo Я думав, що файл не перемістив, але, мабуть, посилання змінилось і змінилося без мене. Ось ще посилання.
Джо З.

Відповіді:


4

Java - 1,985,078 кроків

https://github.com/smack42/ColorFill

Ще один пізній запис. Файл результатів, що містить 1,985,078 кроків, можна знайти тут .

Довідкова інформація:

Я виявив цю проблему кілька років тому, коли почав програмувати власний клон гри Flood-it.

Алгоритм DFS та A * "кращий за неповний"
З самого початку я хотів створити хороший алгоритм вирішення цієї гри. З часом я міг покращити свою розв'язку, включивши декілька стратегій, які виконували різні неповні пошуки (подібні до тих, що використовуються в інших програмах тут), та використовуючи найкращий результат цих стратегій для кожного рішення. Я навіть повторно реалізував алгоритм A * tigrou на Java і додав його до свого вирішувача, щоб досягти загальних кращих рішень, ніж результат tigrou.

вичерпний алгоритм DFS
Тоді я зосередився на алгоритмі, який завжди знаходить оптимальні рішення. Я витратив чимало зусиль, щоб оптимізувати свою вичерпну стратегію пошуку глибин. Щоб прискорити пошук, я включив хеш-карту, яка зберігає всі досліджені стани, щоб пошук міг уникнути їх повторного вивчення. Хоча цей алгоритм працює чудово і розгадує всі головоломки 14x14 досить швидко, він використовує занадто багато пам’яті і працює дуже повільно, використовуючи загадки 19x19 у цьому виклику коду.

Алгоритм Puchert A *
Кілька місяців тому до мене звернулися, щоб подивитися на вирішувач Flood-It від Аарона та Саймона Пухерта . Ця програма використовує алгоритм типу A * з допустимим евристичним (на відміну від tigrou's) і рухається обрізками аналогічно Jump-Point Search. Я швидко помітив, що ця програма дуже швидка і знаходить оптимальні рішення !

Звичайно, мені довелося повторно реалізувати цей чудовий алгоритм і додати його до своєї програми. Я доклав зусиль, щоб оптимізувати свою програму Java для роботи так само швидко, як оригінальну програму C ++ від братів Пухертів. Тоді я вирішив спробувати 100 000 тестових випадків цього виклику. На моїй машині програма працювала понад 120 годин, щоб знайти 1 985 078 кроків, використовуючи мою реалізацію алгоритму Puchert A * .

Це має бути найкращим можливим рішенням цього завдання, якщо тільки в програмі не буде помилок, які призвели до неоптимальних рішень. Будь-який відгук вітається!

редагувати: тут додані відповідні частини коду:

клас AStarPuchertStrategy

/**
 * a specific strategy for the AStar (A*) solver.
 * <p>
 * the idea is taken from the program "floodit" by Aaron and Simon Puchert,
 * which can be found at <a>https://github.com/aaronpuchert/floodit</a>
 */
public class AStarPuchertStrategy implements AStarStrategy {

    private final Board board;
    private final ColorAreaSet visited;
    private ColorAreaSet current, next;
    private final short[] numCaNotFilledInitial;
    private final short[] numCaNotFilled;

    public AStarPuchertStrategy(final Board board) {
        this.board = board;
        this.visited = new ColorAreaSet(board);
        this.current = new ColorAreaSet(board);
        this.next = new ColorAreaSet(board);
        this.numCaNotFilledInitial = new short[board.getNumColors()];
        for (final ColorArea ca : board.getColorAreasArray()) {
            ++this.numCaNotFilledInitial[ca.getColor()];
        }
        this.numCaNotFilled = new short[board.getNumColors()];
    }

    /* (non-Javadoc)
     * @see colorfill.solver.AStarStrategy#setEstimatedCost(colorfill.solver.AStarNode)
     */
    @Override
    public void setEstimatedCost(final AStarNode node) {

        // quote from floodit.cpp: int State::computeValuation()
        // (in branch "performance")
        //
        // We compute an admissible heuristic recursively: If there are no nodes
        // left, return 0. Furthermore, if a color can be eliminated in one move
        // from the current position, that move is an optimal move and we can
        // simply use it. Otherwise, all moves fill a subset of the neighbors of
        // the filled nodes. Thus, filling that layer gets us at least one step
        // closer to the end.

        node.copyFloodedTo(this.visited);
        System.arraycopy(this.numCaNotFilledInitial, 0, this.numCaNotFilled, 0, this.numCaNotFilledInitial.length);
        {
            final ColorAreaSet.FastIteratorColorAreaId iter = this.visited.fastIteratorColorAreaId();
            int nextId;
            while ((nextId = iter.nextOrNegative()) >= 0) {
                --this.numCaNotFilled[this.board.getColor4Id(nextId)];
            }
        }

        // visit the first layer of neighbors, which is never empty, i.e. the puzzle is not solved yet
        node.copyNeighborsTo(this.current);
        this.visited.addAll(this.current);
        int completedColors = 0;
        {
            final ColorAreaSet.FastIteratorColorAreaId iter = this.current.fastIteratorColorAreaId();
            int nextId;
            while ((nextId = iter.nextOrNegative()) >= 0) {
                final byte nextColor = this.board.getColor4Id(nextId);
                if (--this.numCaNotFilled[nextColor] == 0) {
                    completedColors |= 1 << nextColor;
                }
            }
        }
        int distance = 1;

        while(!this.current.isEmpty()) {
            this.next.clear();
            final ColorAreaSet.FastIteratorColorAreaId iter = this.current.fastIteratorColorAreaId();
            int thisCaId;
            if (0 != completedColors) {
                // We can eliminate colors. Do just that.
                // We also combine all these elimination moves.
                distance += Integer.bitCount(completedColors);
                final int prevCompletedColors = completedColors;
                completedColors = 0;
                while ((thisCaId = iter.nextOrNegative()) >= 0) {
                    final ColorArea thisCa = this.board.getColorArea4Id(thisCaId);
                    if ((prevCompletedColors & (1 << thisCa.getColor())) != 0) {
                        // completed color
                        // expandNode()
                        for (final int nextCaId : thisCa.getNeighborsIdArray()) {
                            if (!this.visited.contains(nextCaId)) {
                                this.visited.add(nextCaId);
                                this.next.add(nextCaId);
                                final byte nextColor = this.board.getColor4Id(nextCaId);
                                if (--this.numCaNotFilled[nextColor] == 0) {
                                    completedColors |= 1 << nextColor;
                                }
                            }
                        }
                    } else {
                        // non-completed color
                        // move node to next layer
                        this.next.add(thisCaId);
                    }
                }
            } else {
                // Nothing found, do the color-blind pseudo-move
                // Expand current layer of nodes.
                ++distance;
                while ((thisCaId = iter.nextOrNegative()) >= 0) {
                    final ColorArea thisCa = this.board.getColorArea4Id(thisCaId);
                    // expandNode()
                    for (final int nextCaId : thisCa.getNeighborsIdArray()) {
                        if (!this.visited.contains(nextCaId)) {
                            this.visited.add(nextCaId);
                            this.next.add(nextCaId);
                            final byte nextColor = this.board.getColor4Id(nextCaId);
                            if (--this.numCaNotFilled[nextColor] == 0) {
                                completedColors |= 1 << nextColor;
                            }
                        }
                    }
                }
            }

            // Move the next layer into the current.
            final ColorAreaSet tmp = this.current;
            this.current = this.next;
            this.next = tmp;
        }
        node.setEstimatedCost(node.getSolutionSize() + distance);
    }

}

частина класу AStarSolver

private void executeInternalPuchert(final ColorArea startCa) throws InterruptedException {
    final Queue<AStarNode> open = new PriorityQueue<AStarNode>(AStarNode.strongerComparator());
    open.offer(new AStarNode(this.board, startCa));
    AStarNode recycleNode = null;
    while (open.size() > 0) {
        if (Thread.interrupted()) { throw new InterruptedException(); }
        final AStarNode currentNode = open.poll();
        if (currentNode.isSolved()) {
            this.addSolution(currentNode.getSolution());
            return;
        } else {
            // play all possible colors
            int nextColors = currentNode.getNeighborColors(this.board);
            while (0 != nextColors) {
                final int l1b = nextColors & -nextColors; // Integer.lowestOneBit()
                final int clz = Integer.numberOfLeadingZeros(l1b); // hopefully an intrinsic function using instruction BSR / LZCNT / CLZ
                nextColors ^= l1b; // clear lowest one bit
                final byte color = (byte)(31 - clz);
                final AStarNode nextNode = currentNode.copyAndPlay(color, recycleNode, this.board);
                if (null != nextNode) {
                    recycleNode = null;
                    this.strategy.setEstimatedCost(nextNode);
                    open.offer(nextNode);
                }
            }
        }
        recycleNode = currentNode;
    }
}

частина класу AStarNode

/**
 * check if this color can be played. (avoid duplicate moves)
 * the idea is taken from the program "floodit" by Aaron and Simon Puchert,
 * which can be found at <a>https://github.com/aaronpuchert/floodit</a>
 * @param nextColor
 * @return
 */
private boolean canPlay(final byte nextColor, final List<ColorArea> nextColorNeighbors) {
    final byte currColor = this.solution[this.solutionSize];
    // did the previous move add any new "nextColor" neighbors?
    boolean newNext = false;
next:   for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
        for (final ColorArea prevNeighbor : nextColorNeighbor.getNeighborsArray()) {
            if ((prevNeighbor.getColor() != currColor) && this.flooded.contains(prevNeighbor)) {
                continue next;
            }
        }
        newNext = true;
        break next;
    }
    if (!newNext) {
        if (nextColor < currColor) {
            return false;
        } else {
            // should nextColor have been played before currColor?
            for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
                for (final ColorArea prevNeighbor : nextColorNeighbor.getNeighborsArray()) {
                    if ((prevNeighbor.getColor() == currColor) && !this.flooded.contains(prevNeighbor)) {
                        return false;
                    }
                }
            }
            return true;
        }
    } else {
        return true;
    }
}

/**
 * try to re-use the given node or create a new one
 * and then play the given color in the result node.
 * @param nextColor
 * @param recycleNode
 * @return
 */
public AStarNode copyAndPlay(final byte nextColor, final AStarNode recycleNode, final Board board) {
    final List<ColorArea> nextColorNeighbors = new ArrayList<ColorArea>(128);  // constant, arbitrary initial capacity
    final ColorAreaSet.FastIteratorColorAreaId iter = this.neighbors.fastIteratorColorAreaId();
    int nextId;
    while ((nextId = iter.nextOrNegative()) >= 0) {
        final ColorArea nextColorNeighbor = board.getColorArea4Id(nextId);
        if (nextColorNeighbor.getColor() == nextColor) {
            nextColorNeighbors.add(nextColorNeighbor);
        }
    }
    if (!this.canPlay(nextColor, nextColorNeighbors)) {
        return null;
    } else {
        final AStarNode result;
        if (null == recycleNode) {
            result = new AStarNode(this);
        } else {
            // copy - compare copy constructor
            result = recycleNode;
            result.flooded.copyFrom(this.flooded);
            result.neighbors.copyFrom(this.neighbors);
            System.arraycopy(this.solution, 0, result.solution, 0, this.solutionSize + 1);
            result.solutionSize = this.solutionSize;
            //result.estimatedCost = this.estimatedCost;  // not necessary to copy
        }
        // play - compare method play()
        for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
            result.flooded.add(nextColorNeighbor);
            result.neighbors.addAll(nextColorNeighbor.getNeighborsIdArray());
        }
        result.neighbors.removeAll(result.flooded);
        result.solution[++result.solutionSize] = nextColor;
        return result;
    }
}

2
Ласкаво просимо до PPCG! Чи можете ви включити відповідний код для вирішувача у саму відповідь, щоб він був самостійним, чи повинен ваш github repo колись рухатися чи знижуватися?
Мартін Ендер

Сюди додано найбільш релевантні частини коду: моя реалізація алгоритму "Puchert A *". (цей уривок коду не є автономним і його неможливо скласти як є)
smack42

Я щасливий, що хтось знайшов ідеальне / оптимальне рішення для цього. Але з іншого боку, це означає, що більше не буде конкуренції / нових відповідей.
tigrou

15

C # - 2098382 кроків

Я намагаюся багато речей, більшість з них не вдається і просто не працювали зовсім до недавнього часу. У мене з’явилося щось досить цікаве, щоб опублікувати відповідь.

Звичайно, є шляхи вдосконалення цього ще більше. Я думаю, що пройти під двома кроками можливо.

7 hoursДля отримання результатів знадобилося близько . Ось файл txt з усіма рішеннями, якщо хтось хоче їх перевірити: results.zip

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;

namespace FloodPaintAI
{
    class Node
    {   
        public byte Value;             //1-6
        public int Index;              //unique identifier, used for easily deepcopying the graph
        public List<Node> Neighbours;  
        public List<Tuple<int, int>> NeighboursPositions; //used by BuildGraph() 

        public int Depth;    //used by GetSumDistances() 
        public bool Checked; // 

        public Node(byte value, int index)
        {
            Value = value;      
            Index = index;          
        }

        public Node(Node node)
        {           
            Value = node.Value; 
            Index = node.Index;                     
        }
    }

    class Board
    {
        private const int SIZE = 19;
        private const int STARTPOSITION = 9;

        public Node Root;         //root of graph. each node is a set of contiguous, same color square
        public List<Node> Nodes;  //all nodes in the graph, used for deep copying


        public int EstimatedCost; //estimated cost, used by A* Pathfinding
        public List<byte> Solution;

        public Board(StreamReader input)
        {                   
            byte[,] board = new byte[SIZE, SIZE];
            for(int j = 0 ; j < SIZE ; j++)
            {
                string line = input.ReadLine();
                for(int i = 0 ; i < SIZE ; i++)         
                {                                       
                    board[j, i] = byte.Parse(line[i].ToString());
                }               
            }
            Solution = new List<byte>();
            BuildGraph(board);  
        }

        public Board(Board boardToCopy)
        {               
            //copy the graph            
            Nodes = new List<Node>(boardToCopy.Nodes.Count);
            foreach(Node nodeToCopy in boardToCopy.Nodes)
            {
                Node node = new Node(nodeToCopy);
                Nodes.Add(node);
            }

            //copy "Neighbours" property
            for(int i = 0 ; i < boardToCopy.Nodes.Count ; i++)
            {
                Node node = Nodes[i];
                Node nodeToCopy = boardToCopy.Nodes[i];

                node.Neighbours = new List<Node>(nodeToCopy.Neighbours.Count);
                foreach(Node neighbour in nodeToCopy.Neighbours)
                {
                    node.Neighbours.Add(Nodes[neighbour.Index]);
                }
            }

            Root = Nodes[boardToCopy.Root.Index];
            EstimatedCost = boardToCopy.EstimatedCost;          
            Solution = new List<byte>(boardToCopy.Solution);            
        }

        private void BuildGraph(byte[,] board)
        {                       
            int[,] nodeIndexes = new int[SIZE, SIZE];
            Nodes = new List<Node>();

            //check how much sets we have (1st pass)
            for(int j = 0 ; j < SIZE ; j++)
            {
                for(int i = 0 ; i < SIZE ; i++)         
                {               
                    if(nodeIndexes[j, i] == 0) //not already visited                    
                    {
                        Node newNode = new Node(board[j, i], Nodes.Count);                      
                        newNode.NeighboursPositions = new List<Tuple<int, int>>();
                        Nodes.Add(newNode);

                        BuildGraphFloodFill(board, nodeIndexes, newNode, i, j, board[j, i]);
                    }
                }       
            }

            //set neighbours and root (2nd pass)
            foreach(Node node in Nodes)
            {
                node.Neighbours = new List<Node>();
                node.Neighbours.AddRange(node.NeighboursPositions.Select(x => nodeIndexes[x.Item2, x.Item1]).Distinct().Select(x => Nodes[x - 1]));
                node.NeighboursPositions = null;                
            }
            Root = Nodes[nodeIndexes[STARTPOSITION, STARTPOSITION] - 1];            
        }

        private void BuildGraphFloodFill(byte[,] board, int[,] nodeIndexes, Node node, int startx, int starty, byte floodvalue)
        {
            Queue<Tuple<int, int>> queue = new Queue<Tuple<int, int>>();
            queue.Enqueue(new Tuple<int, int>(startx, starty));

            while(queue.Count > 0)
            {
                Tuple<int, int> position = queue.Dequeue();
                int x = position.Item1;
                int y = position.Item2;

                if(x >= 0 && x < SIZE && y >= 0 && y < SIZE)
                {
                    if(nodeIndexes[y, x] == 0 && board[y, x] == floodvalue)
                    {
                        nodeIndexes[y, x] = node.Index + 1;

                        queue.Enqueue(new Tuple<int, int>(x + 1, y));
                        queue.Enqueue(new Tuple<int, int>(x - 1, y));
                        queue.Enqueue(new Tuple<int, int>(x, y + 1));
                        queue.Enqueue(new Tuple<int, int>(x, y - 1));                                           
                    }               
                    if(board[y, x] != floodvalue)
                        node.NeighboursPositions.Add(position);                         
                }       
            }
        }

        public int GetEstimatedCost()
        {       
            Board current = this;

            //copy current board and play the best color until the end.
            //number of moves required to go the end is the heuristic
            //estimated cost = current cost + heuristic
            while(!current.IsSolved())
            {
                int minSumDistance = int.MaxValue;
                Board minBoard = null;

                //find color which give the minimum sum of distance from root to each other node
                foreach(byte i in current.Root.Neighbours.Select(x => x.Value).Distinct())
                {
                    Board copy = new Board(current);
                    copy.Play(i);                   

                    int distance = copy.GetSumDistances();                  

                    if(distance < minSumDistance)
                    {
                        minSumDistance = distance;
                        minBoard = copy;
                    }
                }
                current = minBoard;
            }           
            return current.Solution.Count;
        }

        public int GetSumDistances()
        {
            //get sum of distances from root to each other node, using BFS
            int sumDistances = 0;           

            //reset marker
            foreach(Node n in Nodes)
            {
                n.Checked = false;                                  
            }

            Queue<Node> queue = new Queue<Node>();
            Root.Checked = true;
            Root.Depth = 0; 
            queue.Enqueue(Root);

            while(queue.Count > 0)
            {
                Node current = queue.Dequeue();                             
                foreach(Node n in current.Neighbours)
                {
                    if(!n.Checked)          
                    {                                   
                        n.Checked = true;                                               
                        n.Depth = current.Depth + 1;
                        sumDistances += n.Depth;            
                        queue.Enqueue(n);   
                    }               
                }
            }
            return sumDistances;
        }       

        public void Play(byte value)            
        {
            //merge root node with other neighbours nodes, if color is matching
            Root.Value = value;
            List<Node> neighboursToRemove = Root.Neighbours.Where(x => x.Value == value).ToList();
            List<Node> neighboursToAdd = neighboursToRemove.SelectMany(x => x.Neighbours).Except((new Node[] { Root }).Concat(Root.Neighbours)).ToList();

            foreach(Node n in neighboursToRemove)
            {
                foreach(Node m in n.Neighbours)
                {
                    m.Neighbours.Remove(n);
                }
                Nodes.Remove(n);
            }   

            foreach(Node n in neighboursToAdd)
            {
                Root.Neighbours.Add(n);         
                n.Neighbours.Add(Root); 
            }           

            //re-synchronize node index
            for(int i = 0 ; i < Nodes.Count ; i++)
            {
                Nodes[i].Index = i;
            }           
            Solution.Add(value);
        }

        public bool IsSolved()
        {           
            //return Nodes.Count == 1;
            return Root.Neighbours.Count == 0;  
        }           
    }


    class Program
    {       
        public static List<byte> Solve(Board input)
        {
            //A* Pathfinding            
            LinkedList<Board> open = new LinkedList<Board>();       
            input.EstimatedCost = input.GetEstimatedCost();
            open.AddLast(input);            

            while(open.Count > 0)
            {                       
                Board current = open.First.Value;
                open.RemoveFirst();

                if(current.IsSolved())
                {
                    return current.Solution;                
                }
                else
                {
                    //play all neighbours nodes colors
                    foreach(byte i in current.Root.Neighbours.Select(x => x.Value).Distinct())
                    {                       
                        Board newBoard = new Board(current);
                        newBoard.Play(i);           
                        newBoard.EstimatedCost = newBoard.GetEstimatedCost();   

                        //insert board to open list
                        bool inserted = false;
                        for(LinkedListNode<Board> node = open.First ; node != null ; node = node.Next)
                        {                               
                            if(node.Value.EstimatedCost > newBoard.EstimatedCost)
                            {
                                open.AddBefore(node, newBoard);
                                inserted = true;
                                break;
                            }
                        }       
                        if(!inserted)
                            open.AddLast(newBoard);                                                 
                    }   
                }   
            }
            throw new Exception(); //no solution found, impossible
        }   

        public static void Main(string[] args)
        {                   
            using (StreamReader sr = new StreamReader("floodtest"))
            {   
                while(!sr.EndOfStream)
                {                               
                    List<Board> boards = new List<Board>();
                    while(!sr.EndOfStream && boards.Count < 100)
                    {
                        Board board = new Board(sr);                        
                        sr.ReadLine(); //skip empty line
                        boards.Add(board);
                    }                                           
                    List<byte>[] solutions = new List<byte>[boards.Count];                                          
                    Parallel.For(0, boards.Count, i => 
                    {                               
                        solutions[i] = Solve(boards[i]); 
                    });                                         
                    foreach(List<byte> solution in solutions)
                    {
                        Console.WriteLine(string.Join(string.Empty, solution));                                             
                    }       
                }               
            }
        }
    }
}

Детальніше про те, як це працює:

Він використовує алгоритм A * Pathfinding .

Що важко - знайти товар heuristic. Якщо heuristicце занижує вартість, воно буде працювати майже як алгоритм Dijkstra , і через складність плати 19x19 з 6 кольорами вона працюватиме назавжди. Якщо вона зависить вартість, вона швидко сходиться до рішення, але взагалі не дасть хороших (можливо, на кшталт 26 кроків було 19). Пошук ідеального, heuristicякий би дав точну кількість кроків, щоб досягти рішення, було б найкращим (було б швидко і дало б найкраще можливе рішення). Це (якщо я не помиляюся) неможливо. Насправді потрібно спочатку вирішити саму дошку, в той час, як це ви насправді намагаєтесь зробити (проблема з куркою та яйцями)

Я спробував багато речей, ось що працювало на heuristic:

  • Я будую графік поточної дошки для оцінки. Кожен nodeявляє собою набір суміжних, однакових кольорів. Використовуючи це graph, я можу легко обчислити точну мінімальну відстань від центру до будь-якого іншого вузла. Наприклад, відстань від центру до верхнього лівого боку буде 10, оскільки як мінімум 10 кольорів розділяють їх.
  • Для обчислення heuristic: я граю на поточній дошці до кінця. Для кожного кроку я вибираю колір, який мінімізує суму відстаней від кореня до всіх інших вузлів.
  • Кількість рухів, необхідних для досягнення цієї мети, - це heuristic.

  • Estimated cost(використовується A *) = moves so far+heuristic

Він не є ідеальним, оскільки трохи завищує вартість (таким чином, не знайдено оптимального рішення). У будь-якому випадку це швидко обчислити і дати хороші результати.

Мені вдалося отримати величезне покращення швидкості, використовуючи графік для виконання всіх операцій. На початку у мене був 2-dimensionмасив. Я заливаю його і перераховую графік за потреби (наприклад: для обчислення евристики). Тепер все робиться за допомогою графіка, який обчислювали лише на початку. Щоб імітувати кроки, заливна заливка більше не потрібна, я замість неї зливаю вузли. Це набагато швидше.


2
Будь ласка, не використовуйте code blocksдля підкреслення тексту. Ми маємо курсив і сміливий для цього.
Фонд позову Моніки

10

Пітон - 10 800 000 кроків

В якості опорного рішення останнього місця розгляньте цю послідовність:

print "123456" * 18

Проїжджаючи всіма кольорами nраз, це означає, що кожен квадратний nкрок буде гарантовано такого ж кольору, як і центральна площа. Кожен квадрат знаходиться не більше 18 кроків від центру, тому 18 циклів гарантують, що всі квадрати будуть однакового кольору. Швидше за все, вона закінчиться менше, але програмі не потрібно зупинятися, як тільки всі квадрати одного кольору; просто набагато вигідніше це зробити. Ця постійна процедура становить 108 кроків на тестовий випадок, на загальну суму 10 800 000.


Метод грубої сили, серйозно ...? Джо, я думав, ти маєш трохи більше досвіду, щоб краще знати, товариш?
WallyWest

2
Це не означає серйозний запис. Зауважте, що я висунув це конкретно як рішення, щоб діяти як остання на останньому місці . Будь-який серйозний запис матиме бал, значно нижчий за цей.
Джо З.

Чи не повинно бути пробілів? Як 1 2 3 4 5 6 ...замість вашого поточного рішення, яке дає 123456....
user80551

1
Був би оптимальним алгоритмом для кодового гольфу (якоюсь іншою мовою, хоча "друк" занадто багато символів).
Cruncher

1
Я також не думаю, що найгірший випадок з 18 кроків навіть можливий . Але ми, звичайно, знаємо, що немає гіршого випадку, тому це безумовно працює :)
Cruncher

8

Java - 2480 714 кроків

Я раніше помилився (я поставив одне вирішальне речення перед циклом, а не в циклі:

import java.io.*;

public class HerjanPaintAI {

    BufferedReader r;
    String[] map = new String[19];
    char[][] colors = new char[19][19];
    boolean[][] reached = new boolean[19][19], checked = new boolean[19][19];
    int[] colorCounter = new int[6];
    String answer = "";
    int mapCount = 0, moveCount = 0;

    public HerjanPaintAI(){
        nextMap();

        while(true){

            int bestMove = nextRound();
            answer += bestMove;
            char t = Character.forDigit(bestMove, 10);
            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    if(reached[x][y]){
                        colors[x][y] = t;
                    }else if(checked[x][y]){
                        if(colors[x][y] == t){
                            reached[x][y] = true;
                        }
                    }
                }
            }

            boolean gameOver = true;
            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    if(!reached[x][y]){
                        gameOver = false;
                        break;
                    }
                }
            }

            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    checked[x][y] = false;
                }
            }
            for(int i = 0; i < 6; i++)
                colorCounter[i] = 0;

            if(gameOver)
                nextMap();
        }
    }

    int nextRound(){
        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                if(reached[x][y]){//check what numbers are next to the reached numbers...
                    check(x, y);
                }
            }
        }

        int[] totalColorCount = new int[6];
        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                totalColorCount[Character.getNumericValue(colors[x][y])-1]++;
            }
        }

        for(int i = 0; i < 6; i++){
            if(totalColorCount[i] != 0 && totalColorCount[i] == colorCounter[i]){//all of this color can be reached
                return i+1;
            }
        }

        int index = -1, number = 0;
        for(int i = 0; i < 6; i++){
            if(colorCounter[i] > number){
                index = i;
                number = colorCounter[i];
            }
        }

        return index+1;
    }

    void check(int x, int y){
        if(x<18)
            handle(x+1, y, x, y);
        if(x>0)
            handle(x-1, y, x, y);
        if(y<18)
            handle(x, y+1, x, y);
        if(y>0)
            handle(x, y-1, x, y);
    }

    void handle(int x2, int y2, int x, int y){
        if(!reached[x2][y2] && !checked[x2][y2]){
            checked[x2][y2] = true;
            if(colors[x2][y2] == colors[x][y]){
                reached[x2][y2] = true;
                check(x2, y2);
            }else{
                colorCounter[Character.getNumericValue(colors[x2][y2])-1]++;
                checkAround(x2, y2);
            }
        }
    }

    void checkAround(int x2, int y2){
        if(x2<18)
            handleAround(x2+1, y2, x2, y2);
        if(x2>0)
            handleAround(x2-1, y2, x2, y2);
        if(y2<18)
            handleAround(x2, y2+1, x2, y2);
        if(y2>0)
            handleAround(x2, y2-1, x2, y2);
    }

    void handleAround(int x2, int y2, int x, int y){
        if(!reached[x2][y2] && !checked[x2][y2]){
            if(colors[x2][y2] == colors[x][y]){
                checked[x2][y2] = true;
                colorCounter[Character.getNumericValue(colors[x2][y2])-1]++;
                checkAround(x2, y2);
            }
        }
    }

    void nextMap(){
        moveCount += answer.length();
        System.out.println(answer);
        answer = "";

        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                reached[x][y] = false;
            }
        }

        reached[9][9] = true;

        try {
            if(r == null)
                r = new BufferedReader(new FileReader("floodtest"));

            for(int i = 0; i < 19; i++){
                map[i] = r.readLine();
            }
            r.readLine();//empty line

            if(map[0] == null){
                System.out.println("Maps solved: " + mapCount + " Steps: " + moveCount);
                r.close();
                System.exit(0);
            }
        } catch (Exception e) {e.printStackTrace();}

        mapCount++;

        for(int x = 0; x < 19; x++){
            colors[x] = map[x].toCharArray();
        }
    }

    public static void main(String[] a){
        new HerjanPaintAI();
    }
}

Скільки часу це пройшло?
Олександр-Бретт

@ ali0sha Мій ПК зайняв навіть не півхвилини
Герхан

Ну лайно. Шахта працює вже півгодини ...
Олександр-Бретт

До речі, гольф не потрібен.
Джо З.

1
@ M.buettner помин, хто - то зробили зв'язати це рішення (і мали більш короткий код) через три години після того, як ви сказали , що.
Джо З.

5

C - 2075452

Я знаю, що я вкрай запізнився на вечірку, але я побачив цей виклик і хотів поїхати.

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>

uint64_t rand_state;

uint64_t rand_u64(void) {
    return (rand_state = rand_state * 6364136223846793005ULL + 1442695040888963407ULL);
}

uint64_t better_rand_u64(void) {
    uint64_t r = rand_u64();
    r ^= ((r >> 32) >> (r >> 60));
    return r + 1442695040888963407ULL;
}

uint32_t rand_u32(void) {return rand_u64() >> 32;}

float normal(float mu, float sigma) {
    uint64_t t = 0;
    for (int i = 0; i < 6; i++) {
        uint64_t r = rand_u64();
        uint32_t a = r;
        uint32_t b = r >> 32;
        t += a;
        t += b;
    }
    return ((float)t / (float)UINT32_MAX - 6) * sigma + mu;
}

typedef struct {
    uint8_t x;
    uint8_t y;
} Position;

#define ncolors 6
#define len 19
#define cells (len * len)
#define max_steps (len * (ncolors - 1))
#define center_x 9
#define center_y 9
#define center ((Position){center_x, center_y})

uint64_t zobrist_table[len][len];

void init_zobrist() {
    for (int y = 0; y < len; y++) {
        for (int x = 0; x < len; x++) {
            zobrist_table[y][x] = better_rand_u64();
        }
    }
}

typedef struct {
    uint64_t hash;
    uint8_t grid[len][len];
    bool interior[len][len];
    int boundary_size;
    Position boundary[cells];
} Grid;


void transition(Grid* grid, uint8_t color, int* surrounding_counts) {
    int i = 0;
    while (i < grid->boundary_size) {
        Position p = grid->boundary[i];
        uint8_t x = p.x;
        uint8_t y = p.y;
        bool still_boundary = false;
        for (int dx = -1; dx <= 1; dx++) {
            for (int dy = -1; dy <= 1; dy++) {
                if (!(dx == 0 || dy == 0)) {
                    continue;
                }
                int8_t x1 = x + dx;
                if (!(0 <= x1 && x1 < len)) {
                    continue;
                }
                int8_t y1 = y + dy;
                if (!(0 <= y1 && y1 < len)) {
                    continue;
                }
                if (grid->interior[y1][x1]) {
                    continue;
                }
                uint8_t color1 = grid->grid[y1][x1];
                if (color1 == color) {
                    grid->boundary[grid->boundary_size++] = (Position){x1, y1};
                    grid->interior[y1][x1] = true;
                    grid->hash ^= zobrist_table[y1][x1];
                } else {
                    surrounding_counts[color1]++;
                    still_boundary = true;
                }
            }
        }
        if (still_boundary) {
            i += 1;
        } else {
            grid->boundary[i] = grid->boundary[--grid->boundary_size]; 
        }
    }
}

void reset_grid(Grid* grid, int* surrounding_counts) {
    grid->hash = 0;
    memset(surrounding_counts, 0, ncolors * sizeof(int)); 
    memset(&grid->interior, 0, sizeof(grid->interior));
    grid->interior[center_y][center_x] = true;
    grid->boundary_size = 0;
    grid->boundary[grid->boundary_size++] = center; 
    transition(grid, grid->grid[center_y][center_x], surrounding_counts);
}

bool load_grid(FILE* fp, Grid* grid) {
    memset(grid, 0, sizeof(*grid));
    char buf[19 + 2];
    size_t row = 0;
    while ((fgets(buf, sizeof(buf), fp)) && row < 19) {
        if (strlen(buf) != 20) {
            break;
        }
        for (int i = 0; i < 19; i++) {
            if (!('1' <= buf[i] && buf[i] <= '6')) {
                return false;
            }
            grid->grid[row][i] = buf[i] - '1';
        }
        row++;
    }
    return row == 19;
}

typedef struct Node Node;

struct Node {
    uint64_t hash;
    float visit_counts[ncolors];
    float mean_cost[ncolors];
    float sse[ncolors];
};

#define iters 15000
#define pool_size 32768
#define pool_nodes (pool_size + 100)
#define pool_mask (pool_size - 1)

Node pool[pool_nodes];

void init_node(Node* node, uint64_t hash, int* surrounding_counts) {
    node->hash = hash;
    for (int i = 0; i < ncolors; i++) {
        if (surrounding_counts[i]) {
            node->visit_counts[i] = 1;
            node->mean_cost[i] = 20;
            node->sse[i] = 400;
        }
    }
}

Node* lookup_node(uint64_t hash) {
    size_t index = hash & pool_mask;
    for (int i = index;; i++) {
        uint64_t h = pool[i].hash;
        if (h == hash || !h) {
            return pool + i;
        }
    }
}

int rollout(Grid* grid, int* surrounding_counts, char* solution) {
    for (int i = 0;; i++) {
        int nonzero = 0;
        uint8_t colors[6];
        for (int i = 0; i < ncolors; i++) {
            if (surrounding_counts[i]) {
                colors[nonzero++] = i;
            }
        }
        if (!nonzero) {
            return i;
        }
        uint8_t color = colors[rand_u32() % nonzero]; 
        *(solution++) = color;
        assert(grid->boundary_size);
        memset(surrounding_counts, 0, 6 * sizeof(int));
        transition(grid, color, surrounding_counts);
    }
}

int simulate(Node* node, Grid* grid, int depth, char* solution) {
    float best_cost = INFINITY;
    uint8_t best_color = 255;
    for (int color = 0; color < ncolors; color++) {
        float n = node->visit_counts[color];
        if (node->visit_counts[color] == 0) {
            continue;
        }
        float sigma = sqrt(node->sse[color] / (n * n));
        float cost = node->mean_cost[color];
        cost = normal(cost, sigma);
        if (cost < best_cost) {
            best_color = color;
            best_cost = cost;
        }
    }
    if (best_color == 255) {
        return 0;
    }
    *solution++ = best_color;
    int score;
    int surrounding_counts[ncolors] = {0};
    transition(grid, best_color, surrounding_counts);
    Node* child = lookup_node(grid->hash);
    if (!child->hash) {
        init_node(child, grid->hash, surrounding_counts);
        score = rollout(grid, surrounding_counts, solution);
    } else {
        score = simulate(child, grid, depth + 1, solution);
    }
    score++;
    float n1 = ++node->visit_counts[best_color];
    float u0 = node->mean_cost[best_color];
    float u1 = node->mean_cost[best_color] = u0 + (score - u0) / n1;
    node->sse[best_color] += (score - u0) * (score - u1);
    return score;
}

int main(void) {
    FILE* fp;
    if (!(fp = fopen("floodtest", "r"))) {
        return 1;
    }
    Grid grid;
    init_zobrist();
    while (load_grid(fp, &grid)) {

        memset(pool, 0, sizeof(pool));
        int surrounding_counts[ncolors] = {0};

        reset_grid(&grid, surrounding_counts);
        Node root = {0};

        init_node(&root, grid.hash, surrounding_counts);

        char solution[max_steps] = {0};
        char best_solution[max_steps] = {0};

        int min_score = INT_MAX;

        uint64_t prev_hash = 0;
        uint64_t hash = 0;
        int same_count = 0;

        for (int iter = 0; iter < iters; iter++) {
            reset_grid(&grid, surrounding_counts);
            int score = simulate(&root, &grid, 1, solution);
            if (score < min_score) {
                min_score = score;
                memcpy(best_solution, solution, score);
            }
            hash = 0;
            for (int i = 0; i < score; i++) {
                hash ^= zobrist_table[i%len][(int)solution[i]];
            }
            if (hash == prev_hash) {
                same_count++;
                if (same_count >= 10) {
                    break;
                }
            } else {
                same_count = 0;
                prev_hash = hash;
            }
        }
        int i;
        for (i = 0; i < min_score; i++) {
            best_solution[i] += '1';
        }
        best_solution[i++] = '\n';
        best_solution[i++] = '\0';
        printf(best_solution);
        fflush(stdout);
    }
    return 0;
}

Алгоритм заснований на пошуку дерев Монте-Карло з вибіркою Томпсона та таблиці транспозиції для зменшення місця пошуку. На моїй машині це займає близько 12 годин. Якщо ви хочете перевірити результати, їх можна знайти за адресою https://dropfile.to/pvjYDMV .


Користувач smack42 пропонує змінити hash ^= zobrist_table[i][(int)solution[i]];до hash ^= zobrist_table[i%len][(int)solution[i]];до аварії виправлення програми.
Стівен

@StepHen Я не бачу, як бал може бути більшим за Len. У вас є вхід, який робить цей збій? У вас є посилання на вашу розмову з smak42? Навіть якщо не вдасться вийти з ладу, я вважаю, що немає ніякої шкоди бути в безпеці з кодом, який не є критичним для перформації.
user1502040

Ні, вибачте, це було в запропонованих редакціях. Ось огляд: codegolf.stackexchange.com/review/sugges-edits/42008
Стівен

+1 за те, що мене побили. Але будьте обережні, можливі ще якісь поліпшення;)
можливі ще tigrou

4

Java - 2,434,108 2,588,847 кроків

Зараз виграє (~ 46К попереду Герджана) станом на 4/26

Welp, тому MrBackend не тільки побив мене, але я знайшов помилку, яка дала оманливо хороший бал. Це виправлено зараз (був також у верифікаторі! Ack), але, на жаль, у мене немає часу, щоб спробувати повернути корону. Спробуємо пізніше.

Це базується на моєму іншому рішенні, але замість того, щоб фарбувати кольором, який є найпоширенішим для країв заливки, він малює кольором, що призведе до викриття країв, які мають багато сусідніх квадратів одного кольору. Назвіть це LookAheadPainter. Пізніше я пограю, якщо потрібно.

import java.io.*;
import java.util.*;

public class LookAheadPainter {

    static final boolean PRINT_FULL_OUTPUT = true;

    public static void main(String[] a) throws IOException {

        int totalSteps = 0, numSolved = 0;

        char[] board = new char[361];
        Scanner s = new Scanner(new File("floodtest"));
        long startTime = System.nanoTime();

        caseloop: while (s.hasNextLine()) {
            for (int l = 0; l < 19; l++) {
                String line = s.nextLine();
                if (line.isEmpty())
                    continue caseloop;
                System.arraycopy(line.toCharArray(), 0, board, l * 19, 19);
            }

            List<Character> colorsUsed = new ArrayList<>();

            for (;;) {

                FillResult fill = new FillResult(board, board[180], (char) 48, null);

                if (fill.nodesFilled.size() == 361)
                    break;

                int[] branchSizes = new int[7];

                for (int i = 1; i < 7; i++) {
                    List<Integer> seeds = new ArrayList<>();
                    for (Integer seed : fill.edges)
                        if (board[seed] == i + 48)
                            seeds.add(seed);

                    branchSizes[i] = new FillResult(fill.filledBoard, (char) (i + 48), (char) 48, seeds).nodesFilled.size();
                }

                int maxSize = 0;
                char bestColor = 0;

                for (int i = 1; i < 7; i++)
                    if (branchSizes[i] > maxSize) {
                        maxSize = branchSizes[i];
                        bestColor = (char) (i + 48);
                    }

                for (int i : fill.nodesFilled)
                    board[i] = bestColor;

                colorsUsed.add(bestColor);
                totalSteps++;
            }
            numSolved++;

            if (PRINT_FULL_OUTPUT) {
                if (numSolved % 1000 == 0)
                    System.out.println("Solved: " + numSolved); // So you know it's working
                String out = "";
                for (Character c : colorsUsed)
                    out += c;
                System.out.println(out);
            }

        }
        s.close();
        System.out.println("\nTotal steps to solve all cases: " + totalSteps);
        System.out.printf("\nSolved %d test cases in %.2f seconds", numSolved, (System.nanoTime() - startTime) / 1000000000.);
    }

    private static class FillResult {

        Set<Integer> nodesFilled, edges;
        char[] filledBoard;

        FillResult(char[] board, char target, char replacement, List<Integer> seeds) {
            Stack<Integer> nodes = new Stack<>();
            nodesFilled = new HashSet<>();
            edges = new HashSet<>();

            if (seeds == null)
                nodes.push(180);
            else
                for (int i : seeds)
                    nodes.push(i);

            filledBoard = new char[361];
            System.arraycopy(board, 0, filledBoard, 0, 361);

            while (!nodes.empty()) {
                int n = nodes.pop();
                if (n < 0 || n > 360)
                    continue;
                if (filledBoard[n] == target) {
                    filledBoard[n] = replacement;
                    nodesFilled.add(n);
                    if (n % 19 > 0)
                        nodes.push(n - 1);
                    if (n % 19 < 18)
                        nodes.push(n + 1);
                    if (n / 19 > 0)
                        nodes.push(n - 19);
                    if (n / 19 < 18)
                        nodes.push(n + 19);
                } else
                    edges.add(n);
            }
        }
    }
}

EDIT: Я написав верифікатор, не соромтесь у використанні, він очікує файл step.txt, що містить кроки, які виводить ваша програма, а також файл, що найпростіше: poplava: Edit-Edit: (Див. OP)

Якщо хтось знайде проблему, повідомте про це мені!


Приємно, Піца! І той верифікатор справді розумний! ОП повинна була скласти щось подібне / контрольну програму (це вирішило б багато проблем).
Герхан

3

C - 2480 714 ступенів

Все ще не оптимально, але це зараз швидше і набирає кращі результати.

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6];

bool loadmap(FILE *fp)
{
    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int main()
{
    char c, best;
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;

    while (loadmap(fp)) {
        do {
            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);
            if (reachsum[map[9][9] - '1'] == 361)
                break;

            memset(totalsum, 0, sizeof totalsum);
            calctotal();

            reachsum[map[9][9] - '1'] = 0;
            for (best = 0, c = 0; c < 6; c++) {
                if (!reachsum[c])
                    continue;
                if (reachsum[c] == totalsum[c]) {
                    best = c;
                    break;
                } else if (reachsum[c] > reachsum[best]) {
                    best = c;
                }
            }

            apply(best + '1');
        } while (++steps);
    }

    fclose(fp);

    printf("steps: %zu\n", steps);
    return 0;
}

Приємно виконаний Віллем, дякую за те, що ти згадав мене у своєму описі. Мене шанує ваша благодать.
Герхан

Без проблем, шановний Гержан
SteelTermite

До речі, ваша заява "вона набрала кращі результати, ніж Гержана" вже застаріла, я просто застосував поліпшення, де я говорив (по пошті);) Удачі, побивши мене зараз!
Герхан

1
515 кроків попереду вас, коли-небудь чув про додавання / вилучення "=", для порівняння, хе-хе
Ерджан

Справді, Гержан. Я оновлю подання відповідно до вашої пропозиції.
SteelTermite

3

Java - 2,245,529 2,201,995 кроків

Паралельний пошук і кешування дерев на глибині 5, мінімізуючи кількість "островів". Оскільки покращення від глибини 4 до глибини 5 було настільки малим, я не думаю, що є багато сенсу в його поліпшенні набагато більше. Але якби воно потребувало вдосконалення, моє відчуття кишки говорить про те, щоб працювати з обчисленням кількості островів як різниці між двома державами, а не перерахувати все.

В даний час виводиться на stdout, поки я не знаю формат введення верифікатора.

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class FloodPaint {

    private static final ForkJoinPool FORK_JOIN_POOL = new ForkJoinPool();

    public static void main(String[] arg) throws IOException, InterruptedException, ExecutionException {
        try (BufferedReader reader = new BufferedReader(new FileReader("floodtest"))) {
            int sum = 0;
            State initState = readNextInitState(reader);
            while (initState != null) {
                List<Integer> solution = generateSolution(initState);
                System.out.println(solution);
                sum += solution.size();
                initState = readNextInitState(reader);
            }
            System.out.println(sum);
        }
    }

    private static State readNextInitState(BufferedReader reader) throws IOException {
        int[] initGrid = new int[State.DIM * State.DIM];
        String line = reader.readLine();
        while ((line != null) && line.isEmpty()) {
            line = reader.readLine();
        }
        if (line == null) {
            return null;
        }
        for (int rowNo = 0; rowNo < State.DIM; ++rowNo) {
            for (int colNo = 0; colNo < State.DIM; ++colNo) {
                initGrid[(State.DIM * rowNo) + colNo] = line.charAt(colNo) - '0';
            }
            line = reader.readLine();
        }
        return new State(initGrid);
    }

    private static List<Integer> generateSolution(State initState) throws InterruptedException, ExecutionException {
        List<Integer> solution = new LinkedList<>();
        StateFactory stateFactory = new StateFactory();
        State state = initState;
        while (!state.isSolved()) {
            int num = findGoodNum(state, stateFactory);
            solution.add(num);
            state = state.getNextState(num, stateFactory);
        }
        return solution;
    }

    private static int findGoodNum(State state, StateFactory stateFactory) throws InterruptedException, ExecutionException {
        SolverTask task = new SolverTask(state, stateFactory);
        FORK_JOIN_POOL.invoke(task);
        return task.get();
    }

}

class SolverTask extends RecursiveTask<Integer> {

    private static final int DEPTH = 5;

    private final State state;
    private final StateFactory stateFactory;

    SolverTask(State state, StateFactory stateFactory) {
        this.state = state;
        this.stateFactory = stateFactory;
    }

    @Override
    protected Integer compute() {
        try {
            Map<Integer,AnalyzerTask> tasks = new HashMap<>();
            for (int num = 1; num <= 6; ++num) {
                if (num != state.getCenterNum()) {
                    State nextState = state.getNextState(num, stateFactory);
                    AnalyzerTask task = new AnalyzerTask(nextState, DEPTH - 1, stateFactory);
                    tasks.put(num, task);
                }
            }
            invokeAll(tasks.values());
            int bestValue = Integer.MAX_VALUE;
            int bestNum = -1;
            for (Map.Entry<Integer,AnalyzerTask> taskEntry : tasks.entrySet()) {
                int value = taskEntry.getValue().get();
                if (value < bestValue) {
                    bestValue = value;
                    bestNum = taskEntry.getKey();
                }
            }
            return bestNum;
        } catch (InterruptedException | ExecutionException ex) {
            throw new RuntimeException(ex);
        }
    }

}

class AnalyzerTask extends RecursiveTask<Integer> {

    private static final int DEPTH_THRESHOLD = 3;

    private final State state;
    private final int depth;
    private final StateFactory stateFactory;

    AnalyzerTask(State state, int depth, StateFactory stateFactory) {
        this.state = state;
        this.depth = depth;
        this.stateFactory = stateFactory;
    }

    @Override
    protected Integer compute() {
        return (depth < DEPTH_THRESHOLD) ? analyze() : split();
    }

    private int analyze() {
        return analyze(state, depth);
    }

    private int analyze(State state, int depth) {
        if (state.isSolved()) {
            return -depth;
        }
        if (depth == 0) {
            return state.getNumIslands();
        }
        int bestValue = Integer.MAX_VALUE;
        for (int num = 1; num <= 6; ++num) {
            if (num != state.getCenterNum()) {
                State nextState = state.getNextState(num, stateFactory);
                int nextValue = analyze(nextState, depth - 1);
                bestValue = Math.min(bestValue, nextValue);
            }
        }
        return bestValue;
    }

    private int split() {
        try {
            if (state.isSolved()) {
                return -depth;
            }
            Collection<AnalyzerTask> tasks = new ArrayList<>(5);
            for (int num = 1; num <= 6; ++num) {
                State nextState = state.getNextState(num, stateFactory);
                AnalyzerTask task = new AnalyzerTask(nextState, depth - 1, stateFactory);
                tasks.add(task);
            }
            invokeAll(tasks);
            int bestValue = Integer.MAX_VALUE;
            for (AnalyzerTask task : tasks) {
                int nextValue = task.get();
                bestValue = Math.min(bestValue, nextValue);
            }
            return bestValue;
        } catch (InterruptedException | ExecutionException ex) {
            throw new RuntimeException(ex);
        }
    }

}

class StateFactory {

    private static final int INIT_CAPACITY = 40000;
    private static final float LOAD_FACTOR = 0.9f;

    private final ReadWriteLock cacheLock = new ReentrantReadWriteLock();
    private final Map<List<Integer>,State> cache = new HashMap<>(INIT_CAPACITY, LOAD_FACTOR);

    State get(int[] grid) {
        List<Integer> stateKey = new IntList(grid);
        State state;
        cacheLock.readLock().lock();
        try {
            state = cache.get(stateKey);
        } finally {
            cacheLock.readLock().unlock();
        }
        if (state == null) {
            cacheLock.writeLock().lock();
            try {
                state = cache.get(stateKey);
                if (state == null) {
                    state = new State(grid);
                    cache.put(stateKey, state);
                }
            } finally {
                cacheLock.writeLock().unlock();
            }
        }
        return state;
    }

}

class State {

    static final int DIM = 19;
    private static final int CENTER_INDEX = ((DIM * DIM) - 1) / 2;

    private final int[] grid;
    private int numIslands;

    State(int[] grid) {
        this.grid = grid;
        numIslands = calcNumIslands(grid);
    }

    private static int calcNumIslands(int[] grid) {
        int numIslands = 0;
        BitSet uncounted = new BitSet(DIM * DIM);
        uncounted.set(0, DIM * DIM);
        int index = -1;
        while (!uncounted.isEmpty()) {
            index = uncounted.nextSetBit(index + 1);
            BitSet island = new BitSet(DIM * DIM);
            generateIsland(grid, index, grid[index], island);
            ++numIslands;
            uncounted.andNot(island);
        }
        return numIslands;
    }

    private static void generateIsland(int[] grid, int index, int num, BitSet island) {
        if ((grid[index] == num) && !island.get(index)) {
            island.set(index);
            if ((index % DIM) > 0) {
                generateIsland(grid, index - 1, num, island);
            }
            if ((index % DIM) < (DIM - 1)) {
                generateIsland(grid, index + 1, num, island);
            }
            if ((index / DIM) > 0) {
                generateIsland(grid, index - DIM, num, island);
            }
            if ((index / DIM) < (DIM - 1)) {
                generateIsland(grid, index + DIM, num, island);
            }
        }
    }

    int getCenterNum() {
        return grid[CENTER_INDEX];
    }

    boolean isSolved() {
        return numIslands == 1;
    }

    int getNumIslands() {
        return numIslands;
    }

    State getNextState(int num, StateFactory stateFactory) {
        int[] nextGrid = grid.clone();
        if (num != getCenterNum()) {
            flood(nextGrid, CENTER_INDEX, getCenterNum(), num);
        }
        State nextState = stateFactory.get(nextGrid);
        return nextState;
    }

    private static void flood(int[] grid, int index, int fromNum, int toNum) {
        if (grid[index] == fromNum) {
            grid[index] = toNum;
            if ((index % 19) > 0) {
                flood(grid, index - 1, fromNum, toNum);
            }
            if ((index % 19) < (DIM - 1)) {
                flood(grid, index + 1, fromNum, toNum);
            }
            if ((index / 19) > 0) {
                flood(grid, index - DIM, fromNum, toNum);
            }
            if ((index / 19) < (DIM - 1)) {
                flood(grid, index + DIM, fromNum, toNum);
            }
        }
    }

}

class IntList extends AbstractList<Integer> implements List<Integer> {

    private final int[] arr;
    private int hashCode = -1;

    IntList(int[] arr) {
        this.arr = arr;
    }

    @Override
    public int size() {
        return arr.length;
    }

    @Override
    public Integer get(int index) {
        return arr[index];
    }

    @Override
    public Integer set(int index, Integer value) {
        int oldValue = arr[index];
        arr[index] = value;
        return oldValue;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) {
            return true;
        }
        if (obj instanceof IntList) {
            IntList arg = (IntList) obj;
            return Arrays.equals(arr, arg.arr);
        }
        return super.equals(obj);
    }

    @Override
    public int hashCode() {
        if (hashCode == -1) {
            hashCode = 1;
            for (int elem : arr) {
                hashCode = 31 * hashCode + elem;
            }
        }
        return hashCode;
    }

}

Вражаючи, чи можете ви зробити так, щоб він писав кроки до файлу? Щоб ми могли це перевірити?
Герхан

@Herjan, схоже, його код самовіриться. Дивіться isS разрешено ()
BurntPizza

@BurntPizza Так? Мій код також самовивіряється, хаха ... Я маю на увазі, це може бути так само неправильно, як і мій власний код.
Гержан

isSsol () не для перевірки, це для припинення. Щодо запису - зробимо в наступній версії.
MrBackend

Мені буде цікаво, якби евристик, який змусив його шукати 5 кроків углиб, лише якщо кількість знайдених кроків за 4 була б більшою, ніж 24призведе до набагато ефективнішого виконання.
Джо З.

2

Мій останній запис: C - 2,384,020 кроків

Цього разу "перевірити всі можливості" ... Цей бал отримують із встановленою глибиною на 3. Глибина в 5 повинна дати ~ 2,1 М кроків ... ТАКОЖ НЕЗАЛОЖНО. Глибина 20+ дає найменшу кількість можливих кроків (вона просто перевіряє всі матчі та найкоротші виграші курсу) ... У неї є найменша кількість кроків, хоч я ненавиджу це, оскільки це лише крихітка трохи краща, але продуктивність відсутня. Я віддаю перевагу моєму іншому запису C, який також є в цій посаді.

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6], mapCount = 0;
FILE *stepfile;

bool loadmap(FILE *fp)
{
    fprintf(stepfile, "%s", "\n");

    mapCount++;

    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int pown(int x, int y){
    int p = 1;
    for(int i = 0; i < y; i++){
        p = p * x;
    }

    return p;
}

int main()
{
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;
    if(!(stepfile = fopen("steps.txt", "w")))
        return 1;

    const int depth = 5;
    char possibilities[pown(6, depth)][depth];
    int t = 0;
    for(int a = 0; a < 6; a++){
        for(int b = 0; b < 6; b++){
            for(int c = 0; c < 6; c++){
                for(int d = 0; d < 6; d++){
                    for(int e = 0; e < 6; e++){
                        possibilities[t][0] = (char)(a + '1');
                        possibilities[t][1] = (char)(b + '1');
                        possibilities[t][2] = (char)(c + '1');
                        possibilities[t][3] = (char)(d + '1');
                        possibilities[t++][4] = (char)(e + '1');
                    }
                }
            }
        }
    }
    poes:
    while (loadmap(fp)) {
        do {
            char map2[19][19];
            memcpy(map2, map, sizeof(map));

            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);

            int best = 0, index = 0, end = depth;
            for(int i = 0; i < pown(6, depth); i++){
                for(int d = 0; d < end; d++){

                    apply(possibilities[i][d]);

                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);

                    if(reachsum[map[9][9] - '1'] == 361 && d < end){
                        end = d+1;
                        index = i;
                        break;
                    }
                }
                if(end == depth && best < reachsum[map[9][9] - '1']){
                    best = reachsum[map[9][9] - '1'];
                    index = i;
                }

                memcpy(map, map2, sizeof(map2));
                memset(reach, 0, sizeof reach);
                memset(reachsum, 0, sizeof reachsum);
                calcreach(true, 9, 9);
            }

            for(int d = 0; d < end; d++){

                apply(possibilities[index][d]);

                memset(reach, 0, sizeof reach);
                memset(reachsum, 0, sizeof reachsum);
                calcreach(true, 9, 9);

                fprintf(stepfile, "%c", possibilities[index][d]);
                steps++;
            }
            if(reachsum[map[9][9] - '1'] == 361)
                goto poes;
        } while (1);
    }

    fclose(fp);
    fclose(stepfile);

    printf("steps: %zu\n", steps);
    return 0;
}

Ще один вдосконалений ШІ, написаний на С - 2445 761 кроків

На основі SteelTermite:

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6], mapCount = 0;
FILE *stepfile;

bool loadmap(FILE *fp)
{
    fprintf(stepfile, "%s", "\n");

    if(mapCount % 1000 == 0)
        printf("mapCount = %d\n", mapCount);

    mapCount++;

    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int main()
{
    char c, best, answer;
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;
    if(!(stepfile = fopen("steps.txt", "w")))
            return 1;

    while (loadmap(fp)) {
        do {
            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);
            if (reachsum[map[9][9] - '1'] == 361)
                break;

            memset(totalsum, 0, sizeof totalsum);
            calctotal();

            reachsum[map[9][9] - '1'] = 0;
            for (best = 0, c = 0; c < 6; c++) {
                if (!reachsum[c])
                    continue;
                if (reachsum[c] == totalsum[c]) {
                    best = c;
                    goto outLoop;
                } else if (reachsum[c] > reachsum[best]) {
                    best = c;
                }
            }

            char map2[19][19];
            memcpy(map2, map, sizeof(map));

            int temp = best;
            for(c = 0; c < 6; c++){

                if(c != best){

                    apply(c + '1');

                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);
                    if (reachsum[best] == totalsum[best]) {

                        memcpy(map, map2, sizeof(map2));
                        memset(reach, 0, sizeof reach);
                        memset(reachsum, 0, sizeof reachsum);
                        calcreach(true, 9, 9);

                        if(temp == -1)
                            temp = c;
                        else if(reachsum[c] > reachsum[temp])
                            temp = c;
                    }

                    memcpy(map, map2, sizeof(map2));
                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);
                }
            }

outLoop:    answer = (char)(temp + '1');
            fprintf(stepfile, "%c", answer);
            apply(answer);
        } while (++steps);
    }

    fclose(fp);
    fclose(stepfile);

    printf("steps: %zu\n", steps);
    return 0;
}

... і ~ 200K побити міну;)
MrBackend

Кожен запис слід розміщувати як індивідуальну відповідь.
Джо З.

@JoeZ. Вибачте, але це було схоже на спам, тому я вирішив зібрати їх в одну відповідь (це не має значення, оскільки враховується лише найкращий (найкращий = AI з найменшою кількістю кроків)). Принаймні, це я думав.
Герхан

1

Java - 2 610 797 4 780 841 сходинок

(Виправлено помилку, помилка зараз значно гірша -_-)

Це моє основне подання довідкового алгоритму, просто робить гістограму квадратів на краях намальованої області та малює найпоширенішим кольором. Працює 100k за пару хвилин.

Очевидно, що не виграє, але це, звичайно, не остання. Я, мабуть, зроблю ще одне уявлення про розумні речі. Не соромтеся використовувати цей алгоритм як вихідну точку.

Скасуйте коментовані рядки для повного виводу. Друк за умовчанням друкує # кроків.

import java.io.*;
import java.util.*;

public class PainterAI {

    public static void main(String[] args) throws IOException {

        int totalSteps = 0, numSolved = 0;

        char[] board = new char[361];
        Scanner s = new Scanner(new File("floodtest"));
        long startTime = System.nanoTime();
        caseloop: while (s.hasNextLine()) {
            for (int l = 0; l < 19; l++) {
                String line = s.nextLine();
                if (line.isEmpty())
                    continue caseloop;
                System.arraycopy(line.toCharArray(), 0, board, l * 19, 19);
            }

            List<Character> colorsUsed = new ArrayList<>();
            Stack<Integer> nodes = new Stack<>();

            for (;; totalSteps++) {
                char p = board[180];
                int[] occurrences = new int[7];
                nodes.add(180);
                int numToPaint = 0;
                while (!nodes.empty()) {
                    int n = nodes.pop();
                    if (n < 0 || n > 360)
                        continue;
                    if (board[n] == p) {
                        board[n] = 48;
                        numToPaint++;
                        if (n % 19 > 0)
                            nodes.push(n - 1);
                        if(n%19<18)
                            nodes.push(n + 1);
                        if(n/19>0)
                            nodes.push(n - 19);
                        if(n/19<18)
                            nodes.push(n + 19);
                    } else
                        occurrences[board[n] - 48]++;
                }
                if (numToPaint == 361)
                    break;
                char mostFrequent = 0;
                int times = -1;
                for (int i = 1; i < 7; i++)
                    if (occurrences[i] > times) {
                        times = occurrences[i];
                        mostFrequent = (char) (i + 48);
                    }
                for (int i = 0; i < 361; i++)
                    if (board[i] == 48)
                        board[i] = mostFrequent;
                //colorsUsed.add(mostFrequent);
            }
            numSolved++;

            /*String out = "";
            for (Character c : colorsUsed)
                out += c;
            System.out.println(out); //print output*/
        }
        s.close();
        System.out.println("Total steps to solve all cases: " + totalSteps);
        System.out.printf("\nSolved %d test cases in %.2f seconds", numSolved, (System.nanoTime() - startTime) / 1000000000.);
    }
}

Гольфи на 860 символів (не включаючи нові рядки для форматування), але можна було б зменшити більше, якби я відчув, що намагаюся:

import java.io.*;import java.util.*;class P{
public static void main(String[]a)throws Exception{int t=0;char[]b=new char[361];
Scanner s=new Scanner(new File("floodtest"));c:while(s.hasNextLine()){
for(int l=0;l<19;l++){String L=s.nextLine();if(L.isEmpty())continue c;
System.arraycopy(L.toCharArray(),0,b,l*19,19);}List<Character>u=new ArrayList<>();
Stack<Integer>q=new Stack<>();for(int[]o=new int[7];;t++){char p=b[180];q.add(180);
int m=0;while(!q.empty()){int n=q.pop();if(n<0|n>360)continue;if(b[n]==p){b[n]=48;m++;
if(n%19>0)q.add(n-1);if(n%19<18)q.add(n+1);if(n/19>0)q.add(n-19);if(n/19<18)
q.add(n+19);}else o[b[n]-48]++;}if(m==361)break;
char f=0;int h=0;for(int i=1;i<7;i++)if(o[i]>h){h=o[i];f=(char)(i+48);}
for(int i=0;i<361;i++)if(b[i]==48)b[i]=f;u.add(f);}String y="";for(char c:u)y+=c;
System.out.println(y);}s.close();System.out.println("Steps: "+t);}}

Єдина причина, що це "звичайно не останнє", це те, що моє довідкове рішення є, щоб замінити речі. Насправді це останнє місце з усіх заяв інших людей на даний момент: P
Джо Z.

@JoeZ. Добре це було перед SteelTermite's, але він покращив своє. Я мав на увазі це як "наступний логічний крок від наївного" підходу. Мене б заклопотало, якби це йшло добре; P
BurntPizza

1

Haskell - 2475.056 сходинок

Алгоритм схожий на той, який запропонував MrBackend у коментарях. Різниця полягає в тому, що його пропозиція знаходить найдешевший шлях до квадратів з найвищими витратами, моє жадібно зменшує ексцентриситет графіка на кожному кроці.

import Data.Array
import qualified Data.Map as M
import Data.Word
import Data.List
import Data.Maybe
import Data.Function (on)
import Data.Monoid
import Control.Arrow
import Control.Monad (liftM)
import System.IO
import System.Environment
import Control.Parallel.Strategies
import Control.DeepSeq

type Grid v = Array (Word8,Word8) v

main = do
  (ifn:_) <- getArgs
  hr <- openFile ifn ReadMode
  sp <- liftM parseFile $ hGetContents hr
  let (len,sol) = turns (map solve sp `using` parBuffer 3 (evalList rseq))
  putStrLn $ intercalate "\n" $ map (concatMap show) sol
  putStrLn $ "\n\nTotal turns: " ++ (show len)

turns :: [[a]] -> (Integer,[[a]])
turns l = rl' 0 l where
  rl' c [] = (c,[])
  rl' c (k:r) = let
   s = c + genericLength k
   (s',l') = s `seq` rl' s r
   in (s',k:l')

centrepoint :: Grid v -> (Word8,Word8)
centrepoint g = let
  ((x0,y0),(x1,y1)) = bounds g
  med l h = let t = l + h in t `div` 2 + t `mod` 2
  in (med x0 x1, med y0 y1)

neighbours :: Grid v -> (Word8,Word8) -> [(Word8,Word8)]
neighbours g (x,y) = filter
  (inRange $ bounds g)
  [(x,y+1),(x+1,y),(x,y-1),(x-1,y)]

areas :: Eq v => Grid v -> [[(Word8,Word8)]]
areas g = p $ indices g where
  p [] = []
  p (a:r) = f : p (r \\ f) where
    f = s g [a] []
s g [] _ = []
s g (h:o) v = let
  n = filter (((==) `on` (g !)) h) $ neighbours g h
  in h : s g ((n \\ (o ++ v)) ++ o) (h : v)

applyFill :: Eq v => v -> Grid v -> Grid v
applyFill c g = g // (zip fa $ repeat c) where
  fa = s g [centrepoint g] []

solve g = solve' gr' where
  aa = areas g
  cp = centrepoint g
  ca = head $ head $ filter (elem cp) aa
  gr' = M.fromList $ map (
    \r1 -> (head r1, map head $ filter (
      \r2 -> head r1 /= head r2 &&
        (not $ null $ intersect (concatMap (neighbours g) r1) r2)
     ) aa
    )
   ) aa
  solve' gr
    | null $ tail $ M.keys $ gr = []
    | otherwise = best : solve' ngr where
      djk _ [] = []
      djk v ((n,q):o) = (n,q) : djk (q:v) (
        o ++ zip (repeat (n+1))
        ((gr M.! q) \\ (v ++ map snd o))
       )
      dout = djk [] [(0,ca)]
      din = let
        m = maximum $ map fst dout
        s = filter ((== m) . fst) dout
        in djk [] s
      rc = filter (flip elem (gr M.! ca) . snd) din
      frc = let
        m = minimum $ map fst rc
        in map snd $ filter ((==m) . fst) rc
      msq = concat $ filter (flip elem frc . head) aa
      clr = map (length &&& head) $ group $ sort $ map (g !) msq
      best = snd $ maximumBy (compare `on` fst) clr
      ngr = let
        ssm = filter ((== best) . (g !)) $ map snd rc
        sml = (concatMap (gr M.!) ssm)
        ncl = ((gr M.! ca) ++ sml) \\ (ca : ssm)
        brk = M.insert ca ncl $ M.filterWithKey (\k _ ->
          (not . flip elem ssm) k
         ) gr
        in M.map 
          (\l -> nub $ map (\e -> if e `elem` ssm then ca else e) l)
          brk


parseFile :: String -> [Grid Word8]
parseFile f = map mk $ filter (not . null . head) $ groupBy ((==) `on` null) $
  map (map ((read :: String -> Word8) . (:[]))) $ lines f where
    mk :: [[Word8]] -> Grid Word8
    mk m = let
      w = fromIntegral (length $ head m) - 1
      h = fromIntegral (length m) - 1
      in array ((0,0),(w,h)) [ ((x,y),v) |
        (y,l) <- zip [h,h-1..] m,
        (x,v) <- zip [0..] l
       ]

showGrid :: Grid Word8 -> String
showGrid g = intercalate "\n" l where
  l = map sl $ groupBy ((==) `on` snd) $
    sortBy ((flip (compare `on` snd)) <> (compare `on` fst)) $
    indices g
  sl = intercalate " " . map (show . (g !))

testsolve = do
  hr <- openFile "floodtest" ReadMode
  sp <- liftM (head . parseFile) $ hGetContents hr
  let
   sol = solve sp
   a = snd $ mapAccumL (\g s -> let g' = applyFill s g in (g',g')) sp sol
  sequence_ $ map (\g -> putStrLn (showGrid g) >> putStrLn "\n") a

Чи закінчився він ще?
Джо З.

Ще немає, це могло б закінчитися зараз, якби я дозволив йому працювати протягом ночі, але вентилятор був галасливим, тому я перезимував комп'ютер. Зараз він знову працює, знову перевірять, коли повернуся з роботи додому.
Список Джеремі

Він вийшов з ладу через переповнення стека, модифікуючи зараз, щоб уникнути цього.
Список Джеремі

1

C # - 2383,569

Це глибокий обхід можливих рішень, який грубо вибирає шлях найкращого вдосконалення (подібний / такий же, як і запис С Гержана), за винятком того, що я спритно змінив порядок генерації рішення кандидата, побачивши, як Гержан розмістив ті самі номери. Хоча пробігати 12 годин, хоча.

class Solver
{
    static void Main()
    {
        int depth = 3;
        string text = File.ReadAllText(@"C:\TEMP\floodtest.txt");
        text = text.Replace("\n\n", ".").Replace("\n", "");
        int count = 0;
        string[] tests = text.Split(new char[] { '.' }, StringSplitOptions.RemoveEmptyEntries);
        for (int i = 0; i < tests.Length; i++)
        {
            Solver s = new Solver(tests[i]);
            string k1 = s.solve(depth);
            count += k1.Length;
            Console.WriteLine(((100 * i) / tests.Length) + " " + i + " " + k1.Length + " " + count + " " + k1);
        }
        Console.WriteLine(count);
    }

    public readonly int MAX_DIM;
    public char[] board;
    public Solver(string prob)
    {
        board = read(prob);
        MAX_DIM = (int)Math.Sqrt(board.Length);
    }

    public string solve(int d)
    {
        var sol = "";
        while (score(eval(copy(board), sol)) != board.Length)
        {
            char[] b = copy(board);
            eval(b, sol);

            var canidates = new List<string>();
            buildCanidates("", canidates, d);
            var best = canidates.Select(c => new {score = score(eval(copy(b), c)), sol = c}).ToList().OrderByDescending(t=>t.score).ThenBy(v => v.sol.Length).First();
            sol = sol + best.sol[0];
        }
        return sol;
    }

    public void buildCanidates(string b, List<string> r, int d)
    {
        if(b.Length>0)
            r.Add(b);
        if (d > 0)
        {
            r.Add(b);
            for (char i = '6'; i >= '1'; i--)
                if(b.Length == 0 || b[b.Length-1] != i)
                    buildCanidates(b + i, r, d - 1);
        }
    }

    public char[] read(string s)
    {
        return s.Where(c => c >= '0' && c <= '9').ToArray();
    }

    public void print(char[] b)
    {
        for (int i = 0; i < MAX_DIM; i++)
        {
            for(int j=0; j<MAX_DIM; j++)
                Console.Write(b[i*MAX_DIM+j]);
            Console.WriteLine();
        }
        Console.WriteLine();
    }

    public char[] copy(char[] b)
    {
        char[] n = new char[b.Length];
        for (int i = 0; i < b.Length; i++)
            n[i] = b[i];
        return n;
    }

    public char[] eval(char[] b, string sol)
    {
        foreach (char c in sol)
            eval(b, c);
        return b;
    }

    public void eval(char[] b, char c)
    {
        foreach (var l in flood(b))
            b[l] = c;
    }

    public int score(char[] b)
    {
        return flood(b).Count;
    }

    public List<int> flood(char[] b)
    {
        int start = (MAX_DIM * (MAX_DIM / 2)) + (MAX_DIM / 2);
        var check = new List<int>(MAX_DIM * MAX_DIM);
        bool[] seen = new bool[b.Length];
        var hits = new List<int>(MAX_DIM*MAX_DIM);

        check.Add(start);
        seen[start]=true;
        char target = b[start];

        int at = 0;
        while (at<check.Count)
        {
            int toCheck = check[at++];
            if (b[toCheck] == target)
            {
                addNeighbors(check, seen, toCheck);
                hits.Add(toCheck);
            }
        }
        return hits;
    }

    public void addNeighbors(List<int> check, bool[] seen, int loc)
    {
        int x = loc / MAX_DIM;
        int y = loc % MAX_DIM;
        addNeighbor(check, seen, x, y - 1);
        addNeighbor(check, seen, x, y + 1);
        addNeighbor(check, seen, x - 1, y);
        addNeighbor(check, seen, x + 1, y);
    }

    public void addNeighbor(List<int> check, bool[] seen, int x, int y)
    {
        if (x >= 0 && x < MAX_DIM && y >= 0 && y < MAX_DIM)
        {
            int l = (x * MAX_DIM) + y;
            if (!seen[l])
            {
                seen[l] = true;
                check.Add(l);
            }
        }
    }
}

1

Ява - 2,403,189

BUILD SUCCESSFUL (total time: 220 minutes 15 seconds)

Це повинна була бути моя спроба жорстокої сили. Але! Моя перша реалізація однократного "найкращого" вибору дала результат:

2,589,328 - BUILD SUCCESSFUL (total time: 3 minutes 11 seconds)

Код, який використовується для обох, є однаковим із грубою силою, яка зберігає "знімок" інших можливих рухів та виконує алгоритм над усіма ними.


  • Випуски

Якщо працювати з підходом "мульти" пройде випадкові збої. Я встановлюю перші 100 записів головоломки в одиничному тесті і можу досягти 100% проходу, але не 100% часу. Щоб компенсувати, я просто відстежив поточний номер головоломки в невдалий час і розпочав нову підбірку теми, де залишилася остання. Кожен потік записав свої відповідні результати у файл. Потім пул файлів конденсувався в один файл.

  • Підхід

Nodeявляє собою плитку / квадрат дошки і зберігає посилання на всіх її сусідів. Відстежуйте три Set<Node>змінні: Remaining, Painted, Targets. Кожна ітерація розглядає Targetsгрупування всіхcandidate вузлів за значенням, вибираючи target valueкількість "впливаючих" вузлів. Ці уражені вузли потім стають мішенню для наступної ітерації.

Джерело поширюється на багато класів, і фрагменти не дуже значущі від контексту цілого. Моє джерело можна переглядати через GitHub . Я також розгубився з JSFiddle демонстрацією для візуалізації.

Тим не менш, мій метод роботи на коні Solver.java:

public void flood() {

 final Data data = new Data();
 consolidateCandidates(data, targets);

 input.add(data.getTarget());

 if(input.size() > SolutionRepository.getInstance().getThreshold()){
  //System.out.println("Exceeded threshold: " + input.toString());
  cancelled = true;
 }
 paintable.addAll(data.targets());
 remaining.removeAll(data.targets());

 if(!data.targets().isEmpty()){
  targets = data.potentialTargets(data.targets(), paintable);

  data.setPaintable(paintable);
  data.setRemaining(remaining);
  data.setInput(input);

  SolutionRepository.getInstance().addSnapshot(data, input);
 }
}

1

C # - 2,196,462 2,155,834

Це фактично той самий підхід "шукати найкращого нащадка", як і інший мої вирішувач, але з кількома оптимізаціями, які ледь-ледь, з паралелізмом, дозволяють йому пройти на глибину 5 трохи менше 10 годин. У ході тестування цього я також виявив помилку в оригіналі, так що алгоритм час від часу здійснював неефективні маршрути до кінцевого стану (він не враховував глибину станів з балом = 64; виявляв під час гри з результатами глибини = 7).

Основна відмінність цього та попереднього вирішувача полягає в тому, що він зберігає стани гри потоків у пам'яті, тому йому не доведеться відновлювати 6 ^ 5 станів. На основі використання процесора під час роботи, я впевнений, що це перемістилося з процесора, пов'язаного з пропускною здатністю пам'яті. Велике задоволення. Стільки гріхів.

Редагувати: Через причини алгоритм глибини 5 не завжди дає найкращий результат. Для підвищення продуктивності давайте просто зробимо глибину 5 ... і 4 ... і 3 і 2 і 1, і подивимося, що найкраще. Поголювали ще 40 крок. Оскільки глибина 5 - основна частина часу, додавання від 4 до 1 лише збільшує час виконання від ~ 10 годин до ~ 11 годин. Так!

using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Collections.Generic;

public class Program
{
    static void Main()
    {
        int depth = 5;
        string text = File.ReadAllText(@"C:\TEMP\floodtest.txt");
        text = text.Replace("\n\n", ".").Replace("\n", "");
        int count = 0;
        string[] tests = text.Split(new [] { '.' }, StringSplitOptions.RemoveEmptyEntries);

        Stopwatch start = Stopwatch.StartNew();

        const int parChunk = 16*16;
        for (int i = 0; i < tests.Length; i += parChunk)
        {
            //did not know that parallel select didn't respect order
            string[] sols = tests.Skip(i).Take(parChunk).AsParallel().Select((t, idx) => new { s = new Solver2(t).solve(depth), idx}).ToList().OrderBy(v=>v.idx).Select(v=>v.s).ToArray();
            for (int j = 0; j < sols.Length; j++)
            {
                string k1 = sols[j];
                count += k1.Length;
                int k = i + j;
                int estimate = (int)((count*(long)tests.Length)/(k+1));
                Console.WriteLine(k + "\t" + start.Elapsed.TotalMinutes.ToString("F2") + "\t" + count + "\t" + estimate + "\t" + k1.Length + "\t" + k1);
            }
        }
        Console.WriteLine(count);
    }
}

public class Solver2
{
    public readonly int MAX_DIM;
    public char[] board;
    public Solver2(string prob)
    {
        board = read(prob);
        MAX_DIM = (int)Math.Sqrt(board.Length);
    }

    public string solve(int d)
    {
        string best = null;
        for (int k = d; k >= 1; k--)
        {
            string c = subSolve(k);
            if (best == null || c.Length < best.Length)
                best = c;
        }
        return best;
    }

    public string subSolve(int d)
    {
        State current = new State(copy(board), '\0', flood(board));
        var sol = "";

        while (current.score != board.Length)
        {
            State nextState = subSolve(current, d);
            sol = sol + nextState.key;
            current = nextState;
        }
        return sol;
    }

    public State subSolve(State baseState, int d)
    {
        if (d == 0)
            return baseState;
        if (!baseState.childrenGenerated)
        {
            for (int i = 0; i < baseState.children.Length; i++)
            {
                if (('1' + i) == baseState.key) continue; //no point in even eval'ing
                char[] board = copy(baseState.board);
                foreach(int idx in baseState.flood)
                    board[idx] = (char)('1' + i);
                List<int> f = flood(board);
                if (f.Count != baseState.score)
                    baseState.children[i] = new State(board, (char)('1' + i), f);
            }
            baseState.childrenGenerated = true;
        }
        State bestState = null;

        for (int i = 0; i < baseState.children.Length; i++)
            if (baseState.children[i] != null)
            {
                State bestChild = subSolve(baseState.children[i], d - 1);
                baseState.children[i].bestChildScore = bestChild.bestChildScore;
                if (bestState == null || bestState.bestChildScore < bestChild.bestChildScore)
                    bestState = baseState.children[i];
            }
        if (bestState == null || bestState.bestChildScore == baseState.score)
        {
            if (baseState.score == baseState.board.Length)
                baseState.bestChildScore = baseState.score*(d + 1);
            return baseState;
        }
        return bestState;
    }

    public char[] read(string s)
    {
        return s.Where(c => c >= '1' && c <= '6').ToArray();
    }

    public char[] copy(char[] b)
    {
        char[] n = new char[b.Length];
        for (int i = 0; i < b.Length; i++)
            n[i] = b[i];
        return n;
    }

    public List<int> flood(char[] b)
    {
        int start = (MAX_DIM * (MAX_DIM / 2)) + (MAX_DIM / 2);
        var check = new List<int>(MAX_DIM * MAX_DIM);
        bool[] seen = new bool[b.Length];
        var hits = new List<int>(MAX_DIM * MAX_DIM);

        check.Add(start);
        seen[start] = true;
        char target = b[start];

        int at = 0;
        while (at < check.Count)
        {
            int toCheck = check[at++];
            if (b[toCheck] == target)
            {
                addNeighbors(check, seen, toCheck);
                hits.Add(toCheck);
            }
        }
        return hits;
    }

    public void addNeighbors(List<int> check, bool[] seen, int loc)
    {
        //int x = loc / MAX_DIM;
        int y = loc % MAX_DIM;

        if(loc+MAX_DIM < seen.Length)
            addNeighbor(check, seen, loc+MAX_DIM);
        if(loc-MAX_DIM >= 0)
            addNeighbor(check, seen, loc-MAX_DIM);
        if(y<MAX_DIM-1)
            addNeighbor(check, seen, loc+1);
        if (y > 0)
            addNeighbor(check, seen, loc-1);
    }

    public void addNeighbor(List<int> check, bool[] seen, int l)
    {
        if (!seen[l])
        {
            seen[l] = true;
            check.Add(l);
        }
    }
}

public class State
{
    public readonly char[] board;
    public readonly char key;
    public readonly State[] children = new State[6];
    public readonly List<int> flood; 
    public readonly int score;
    public bool childrenGenerated;
    public int bestChildScore;
    public State(char[] board, char k, List<int> flood)
    {
        this.board = board;
        key = k;
        this.flood = flood;
        score = flood.Count;
        bestChildScore = score;
    }
}

Я спробував ваш код, і він не компілюється. Поруч із одним викликом методу рішення є помилка. Окрім цього, також є декілька заяв про "використання". У будь-якому разі, якщо ваша програма просто вирішить все за кроками 2.1M, привітайте, це досить вражає.
tigrou

@tigrou У мене не було проблем із використанням операторів; виправлено помилку вирішення виклику - це був артефакт спроби просто оновити код замість того, щоб повторно (скопіювати / вставити) - ввести його. Вибачте, але це.
CoderTao

нахабний. Ви мали намір використовувати імпорт простору імен ==. Виправлення це теж.
CoderTao

Який процесор ви використовуєте для вирішення всіх плат на глибині 5 за 11 годин? Я запустив програму під I5 760@2.8 ГГц. Для виведення кожного шматка 256 дощок знадобилося 30 хвилин. Виходячи з цього, потрібно було б 8 днів, щоб вирішити 100 000 дощок. ЦП протягом цього часу використовував 80-100% використання, усі чотири ядра використовувались. Можливо, є проблема віртуальної машини, яка використовується для запуску тестів, але це приблизно в 16 разів повільніше, ніж ви (ви сказали, що це зайняло 11 годин).
tigrou

@tigrou Я працюю на i5 750@2.67 (обладнання для 3-4 років). У режимі VS режим налагодження проти випуску - це 50% різниця, але я сумніваюся, що це пояснить 16-кратну різницю. Якщо ви працюєте під хостом Linux, ви можете спробувати компілювати моно
CoderTao

1

Delphi XE3 2,979,145 кроків

Гаразд, це моя спроба. Я називаю мінливу частину крапом, кожен виток зробить копію масиву і протестує всі можливі кольори, щоб побачити, який колір дасть найбільшу крапку.

Виконує загадки за 3 години 6 хвилин

program Main;

{$APPTYPE CONSOLE}

{$R *.res}

uses
  SysUtils,
  Classes,
  Generics.Collections,
  math,
  stopwatch in 'stopwatch.pas';

type
  myArr=array[0..1]of integer;
const
  MaxSize=19;
  puzLoc='here is my file';
var
  L:TList<TList<integer>>;
  puzzles:TStringList;
  sc:TList<myArr>;
  a:array[0..MaxSize-1,0..MaxSize-1] of Integer;
  aTest:array[0..MaxSize-1,0..MaxSize-1] of Integer;
  turns,midCol,sX,sY,i:integer;
  currBlob,biggestBlob,ColorBigBlob:integer;
  sTurn:string='';
  GLC:integer=0;

procedure FillArrays;
var
  ln,x,y:integer;
  puzzle:TStringList;
begin
  sc:=TList<myArr>.Create;
  puzzle:=TStringList.Create;    
  while puzzle.Count<19 do
  begin
    if puzzles[GLC]='' then
    begin
      inc(GLC);
      continue
    end
    else
      puzzle.Add(puzzles[GLC]);
    inc(GLC)
  end;    
  for y:=0to MaxSize-1do
    for x:=0to MaxSize-1do
      a[y][x]:=Ord(puzzle[y][x+1])-48;
  puzzle.Free;
end;
function CreateArr(nx,ny:integer):myArr;
begin
  Result[1]:=nx;
  Result[0]:=ny;
end;

procedure CreateBlob;
var
  tst:myArr;
  n,tx,ty:integer;
  currColor:integer;
begin
  n:=0;
  sc.Clear;
  currColor:=a[sy][sx];
  sc.Add(CreateArr(sx,sy));
  repeat
    tx:=sc[n][1];
    ty:=sc[n][0];
    if tx>0 then
      if a[ty][tx-1]=currColor then
      begin
        tst:=CreateArr(tx-1,ty);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if tx<MaxSize-1 then
      if a[ty][tx+1]=currColor then
      begin
        tst:=CreateArr(tx+1,ty);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if ty>0 then
      if a[ty-1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty-1);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if ty<MaxSize-1 then
      if a[ty+1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty+1);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    inc(n);
  until (n=sc.Count);
end;

function BlobSize:integer;
var
  L:TList<myArr>;
  tst:myArr;
  n,currColor,tx,ty:integer;
begin
  n:=0;
  L:=TList<myArr>.Create;
  currColor:=aTest[sy][sx];
  L.Add(CreateArr(sx,sy));

  repeat
    tx:=L[n][1];
    ty:=L[n][0];
    if tx>0then
      if aTest[ty][tx-1]=currColor then
      begin
        tst:=CreateArr(tx-1,ty);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if tx<MaxSize-1then
      if aTest[ty][tx+1]=currColor then
      begin
        tst:=CreateArr(tx+1,ty);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if ty>0then
      if aTest[ty-1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty-1);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if ty<MaxSize-1then
      if aTest[ty+1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty+1);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    inc(n);
  until n=l.Count;
  Result:=L.Count;
  L.Free;
end;

function AllsameColor(c:integer):boolean;
var
  cy,cx:integer;
begin
  Result:=true;
  for cy:=0to MaxSize-1do
    for cx:=0to MaxSize-1do
      if a[cy][cx]=c then
        continue
      else
        exit(false);
end;
procedure ChangeColors(old,new:integer; testing:boolean=false);
var
  i,j:integer;
  tst:myArr;
begin
  if testing then
  begin
    for i:= 0to MaxSize-1do
      for j:= 0to MaxSize-1do
        aTest[i][j]:=a[i][j];    
    for I:=0to sc.Count-1do
    begin
      tst:=sc[i];
      aTest[tst[0]][tst[1]]:=new;
    end;
  end
  else
  begin
    for I:=0to sc.Count-1do
    begin
      tst:=sc[i];
      a[tst[0]][tst[1]]:=new;
    end;
  end;
end;
var
  sw, swTot:TStopWatch;
  solved:integer=0;
  solutions:TStringList;
  steps:integer;
  st:TDateTime;
begin          
  st:=Now;
  writeln(FormatDateTime('hh:nn:ss',st));
  solutions:=TStringList.Create;
  puzzles:=TStringList.Create;
  puzzles.LoadFromFile(puzLoc);
  swTot:=TStopWatch.Create(true);
  turns:=0;
  repeat
    sTurn:='';    
    FillArrays;
    sX:=Round(Sqrt(MaxSize))+1;
    sY:=sX;    
    repeat
      biggestBlob:=0;
      ColorBigBlob:=0;
      midCol:=a[sy][sx];
      CreateBlob;
      for I:=1to 6do
      begin
        if I=midCol then continue;    
        ChangeColors(midCol,I,true);
        currBlob:=BlobSize;
        if currBlob>biggestBlob then
        begin
          biggestBlob:=currBlob;
          ColorBigBlob:=i;
        end;
      end;
      ChangeColors(midCol,ColorBigBlob);
      inc(turns);
      if sTurn='' then
        sTurn:=IntToStr(ColorBigBlob)
      else
        sTurn:=sTurn+', '+IntToStr(ColorBigBlob);
    until AllsameColor(a[sy][sx]);
    solutions.Add(sTurn);
    inc(solved);
    if solved mod 100=0then
      writeln(Format('Solved %d puzzles || %s',[solved,FormatDateTime('hh:nn:ss',Now-st)]));    
  until GLC>=puzzles.Count-1;    
  swTot.Stop;
  WriteLn(Format('solving these puzzles took %d',[swTot.Elapsed]));
  writeln(Format('Total moves: %d',[turns]));
  solutions.SaveToFile('save solutions here');
  readln;
end.

Думаючи також про метод грубої зворотної зйомки.
Можливо, розваги на ці вихідні ^^


0

Javascript / node.js - 2,588,847

Алгоритм дещо відрізняється від більшості тут, оскільки він використовує попередньо обчислені регіони та різні стани між обчисленнями. Тут працює менше 10 хвилин, якщо вас турбує швидкість через JavaScript.

var fs = require('fs')


var file = fs.readFileSync('floodtest','utf8');
var boards = file.split('\n\n');
var linelength  = boards[0].split('\n')[0].length;
var maxdim = linelength* linelength;


var board = function(info){
    this.info =[];
    this.sameNeighbors = [];
    this.differentNeighbors = [];
    this.samedifferentNeighbors = [];
    for (var i = 0;i <info.length;i++ ){
        this.info.push(info[i]|0);
    };

    this.getSameAndDifferentNeighbors();
}

board.prototype.getSameAndDifferentNeighbors = function(){
    var self = this;
    var info = self.info;
    function getSameNeighbors(i,value,sameneighbors,diffneighbors){

        var neighbors = self.getNeighbors(i);
        for(var j =0,nl = neighbors.length; j< nl;j++){
            var index = neighbors[j];
            if (info[index]  === value ){
                if( sameneighbors.indexOf(index) === -1){
                    sameneighbors.push(index);
                    getSameNeighbors(index,value,sameneighbors,diffneighbors);
                }
            }else if( diffneighbors.indexOf(index) === -1){
                    diffneighbors.push(index);
            }
        } 

    }


    var sneighbors = [];
    var dneighbors = [];
    var sdneighbors = [];

    for(var i= 0,l= maxdim;i<l;i++){
        if (sneighbors[i] === undefined){
            var sameneighbors = [i];
            var diffneighbors = [];
            getSameNeighbors(i,info[i],sameneighbors,diffneighbors);
            for (var j = 0; j<sameneighbors.length;j++){
                var k = sameneighbors[j];
                sneighbors[k] = sameneighbors;
                dneighbors[k] = diffneighbors;
            } 
        }

    }

    for(var i= 0,l= maxdim;i<l;i++){
        if (sdneighbors[i] === undefined){
            var value = [];
            var dni = dneighbors[i];
            for (var j = 0,dnil = dni.length; j<dnil;j++){
                var dnij = dni[j];
                var sdnij = sneighbors[dnij];
                for(var k = 0,sdnijl = sdnij.length;k<sdnijl;k++){
                    if (value.indexOf(sdnij[k])=== -1){
                        value.push(sdnij[k]);
                    }
                }
            };
            var sni = sneighbors[i];
            for (var j=0,snil = sni.length;j<snil;j++){
                sdneighbors[sni[j]] = value;
            };
        };
    }
    this.sameNeighbors = sneighbors;
    this.differentNeighbors =  dneighbors;
    this.samedifferentNeighbors =sdneighbors;

}

board.prototype.getNeighbors = function(i){
        var returnValue = [];

        var index = i-linelength;
        if (index >= 0){
            returnValue.push(index);
        }

        index = i+linelength;
        if (index < maxdim){

            returnValue.push(index);
        }

        index = i-1;

        if (index >= 0 && index/linelength >>> 0 === i/linelength  >>> 0){
            returnValue.push(index);
        }
        index = i+1;
        if (index/linelength >>> 0 === i/linelength >>> 0){
            returnValue.push(index);
        }

        if (returnValue.indexOf(-1) !== -1){
            console.log(i,parseInt(index/linelength,10),parseInt(i/linelength,10));
        } 
        return returnValue 
}

board.prototype.solve = function(){
    var i,j;
    var info = this.info;
    var sameNeighbors = this.sameNeighbors;
    var samedifferentNeighbors = this.samedifferentNeighbors;
    var middle = 9*19+9;
    var maxValues = [];

    var done = {};
    for (i=0; i<sameNeighbors[middle].length;i++){
        done[sameNeighbors[middle][i]] = true;
    }
    var usefullNeighbors = [[],[],[],[],[],[],[]];
    var diff = [];
    var count = [0];

    count[1] = 0;
    count[2] = 0;
    count[3] = 0;
    count[4] = 0;
    count[5] = 0;
    count[6] = 0;

    var addusefullNeighbors = function(index,diff){

        var indexsamedifferentNeighbors =samedifferentNeighbors[index];
        for (var i=0;i < indexsamedifferentNeighbors.length;i++){
            var is = indexsamedifferentNeighbors[i];
            var value = info[is];
            if (done[is] === undefined && usefullNeighbors[value].indexOf(is) === -1){
                usefullNeighbors[value].push(is);
                diff.push(value);
            }

        }
    }
    addusefullNeighbors(middle,diff);


    while(  usefullNeighbors[1].length > 0 || usefullNeighbors[2].length > 0 ||
            usefullNeighbors[3].length > 0 || usefullNeighbors[4].length > 0 ||
            usefullNeighbors[5].length > 0 || usefullNeighbors[6].length > 0 ){
        for (i=0;i < diff.length;i++){ 
            count[diff[i]]++;
        };
        var maxValue = count.indexOf(Math.max.apply(null, count));
        diff.length = 0;
        var used = usefullNeighbors[maxValue];
        for (var i=0,ul = used.length;i < ul;i++){
            var index = used[i];
            if (info[index] === maxValue){
                done[index] = true;
                addusefullNeighbors(index,diff);
            }
        }
        used.length = 0;
        count[maxValue] = 0;


        maxValues.push(maxValue);
    }
    return maxValues.join("");
};
var solved = [];
var start = Date.now();
for (var boardindex =0;boardindex < boards.length;boardindex++){ 
    var b = boards[boardindex].replace(/\n/g,'').split('');
    var board2 = new board(b);
    solved.push(board2.solve());
};
var diff = Date.now()-start;
console.log(diff,boards.length);
console.log(solved.join('').length);
console.log("end");

fs.writeFileSync('solution.txt',solved.join('\n'),'utf8');

-3

C код, який гарантовано знайде оптимальне рішення за допомогою простої грубої сили. Працює для сіток довільного розміру та всіх входів. На більшості сіток потрібно зайняти дуже-дуже довго.

Затоплення є надзвичайно неефективним і залежить від рекурсії. Можливо, потрібно зробити ваш стек більшим, якщо він дуже маленький. Система грубої сили використовує рядок для утримування чисел та просте додавання-перенесення, щоб перейти через усі можливі варіанти. Це також надзвичайно неефективно, оскільки воно повторює більшість кроків чотирирічних разів.

На жаль, я не зміг перевірити його на всіх тестових випадках, оскільки я помру від старості до того, як він закінчиться.

#include <stdio.h>
#include <string.h>


#define GRID_SIZE       19

char grid[GRID_SIZE][GRID_SIZE] = { {3,3,5,4,1,3,4,1,5,3,3,5,4,1,3,4,1,5},
                                    {5,1,3,4,1,1,5,2,1,3,3,5,4,1,3,4,1,5},
                                    {6,5,2,3,4,3,3,4,3,3,3,5,4,1,3,4,1,5},
                                    {4,4,4,5,5,5,4,1,4,3,3,5,4,1,3,4,1,5},
                                    {6,2,5,3,3,1,1,6,6,3,3,5,4,1,3,4,1,5},
                                    {5,5,1,2,5,2,6,6,3,3,3,5,4,1,3,4,1,5},
                                    {6,1,1,5,3,6,2,3,6,3,3,5,4,1,3,4,1,5},
                                    {1,2,2,4,5,3,5,1,2,3,3,5,4,1,3,4,1,5},
                                    {3,6,6,1,5,1,3,2,4,3,3,5,4,1,3,4,1,5} };
char grid_save[GRID_SIZE][GRID_SIZE];

char test_grids[6][GRID_SIZE][GRID_SIZE];

void flood_fill(char x, char y, char old_colour, char new_colour)
{
    if (grid[y][x] == new_colour)
        return;

    grid[y][x] = new_colour;

    if (y > 0)
    {
        if (grid[y-1][x] == old_colour)
            flood_fill(x, y-1, old_colour, new_colour);
    }
    if (y < GRID_SIZE - 1)
    {
        if (grid[y+1][x] == old_colour)
            flood_fill(x, y+1, old_colour, new_colour);
    }

    if (x > 0)
    {
        if (grid[y][x-1] == old_colour)
            flood_fill(x-1, y, old_colour, new_colour);
    }
    if (x < GRID_SIZE - 1)
    {
        if (grid[y][x+1] == old_colour)
            flood_fill(x+1, y, old_colour, new_colour);
    }
}

bool check_grid(void)
{
    for (char i = 0; i < 6; i++)
    {
        if (!memcmp(grid, &test_grids[i][0][0], sizeof(grid)))
            return(true);
    }

    return(false);
}

void inc_string_num(char *s)
{
    char *c;

    c = s + strlen(s) - 1;
    *c += 1;

    // carry
    while (*c > '6')
    {
        *c = '1';
        if (c == s) // first char
        {
            strcat(s, "1");
            return;
        }
        c--;
        *c += 1;
    }
}

void print_grid(void)
{
    char x, y;
    for (y = 0; y < GRID_SIZE; y++)
    {
        for (x = 0; x < GRID_SIZE; x++)
            printf("%d ", grid[y][x]);
        printf("\n");
    }
    printf("\n");
}

int main(int argc, char* argv[])
{
    // create test grids for comparisons
    for (char i = 0; i < 6; i++)
        memset(&test_grids[i][0][0], i+1, GRID_SIZE*GRID_SIZE);

    char s[256] = "0";
    //char s[256] = "123456123456123455";
    memcpy(grid_save, grid, sizeof(grid));


    print_grid();
    do
    {
        memcpy(grid, grid_save, sizeof(grid));
        inc_string_num(s);

        for (unsigned int i = 0; i < strlen(s); i++)
        {
            flood_fill(4, 4, grid[4][4], s[i] - '0');
        }
    } while(!check_grid());
    print_grid();

    printf("%s\n", s);

    return 0;
}

Наскільки я можу сказати, це теперішній переможець. Конкурс вимагає, щоб:

Ваша програма повинна бути повністю детермінованою; дозволяються псевдовипадкові рішення, але програма повинна кожного разу генерувати один і той же результат для одного і того ж тестового випадку.

Перевірка

Програма-переможець зробить найменшу загальну кількість кроків, щоб вирішити всі 100 000 тестових випадків, знайдених у цьому файлі (заархівований текстовий файл, 14,23 МБ). Якщо два рішення роблять однакову кількість кроків (наприклад, якщо вони обидва знайшли оптимальну стратегію), коротша програма виграє.

Оскільки це завжди знаходить найменшу кількість кроків для завершення кожної дошки, і жоден з інших не робить, вона наразі попереду. Якщо хтось може придумати більш коротку програму, він може виграти, то я представляю наступну оптимізовану за розміром версію. Виконання трохи повільніше, але час виконання не є частиною переможних умов:

#include <stdio.h>
#include <string.h>
#define A 9
int g[A][A]={{3,3,5,4,1,3,4,1,5},{5,1,3,4,1,1,5,2,1},{6,5,2,3,4,3,3,4,3},{4,4,4,5,5,5,4,1,4},{6,2,5,3,3,1,1,6,6},{5,5,1,2,5,2,6,6,3},{6,1,1,5,3,6,2,3,6},{1,2,2,4,5,3,5,1,2},{3,6,6,1,5,1,3,2,4}};
int s[A][A];
int t[6][A][A];
void ff(int x,int y,int o,int n)
{if (g[y][x]==n)return;g[y][x]=n;if (y>0){if(g[y-1][x]==o)ff(x,y-1,o,n);}if(y<A-1){if(g[y+1][x]==o)ff(x,y+1,o,n);}if(x>0){if (g[y][x-1] == o)ff(x-1,y,o,n);}if(x<A-1){if(g[y][x+1]==o)ff(x+1,y,o,n);}}
bool check_g(void)
{for(int i=0;i<6;i++){if(!memcmp(g,&t[i][0][0],sizeof(g)))return(true);}return(0);}
void is(char*s){char*c;c=s+strlen(s)-1;*c+=1;while(*c>'6'){*c='1';if (c==s){strcat(s,"1");return;}c--;*c+=1;}}
void pr(void)
{int x, y;for(y=0;y<A;y++){for(x=0;x<A;x++)printf("%d ",g[y][x]);printf("\n");}printf("\n");}
int main(void)
{for(int i=0;i<6;i++)memset(&t[i][0][0],i+1,A*A);char s[256]="0";memcpy(s,g,sizeof(g));pr();do{memcpy(g,s,sizeof(g));is(s);for(int i=0;i<strlen(s);i++){ff(4,4,g[4][4],s[i]-'0');}}while(!check_g());
pr();printf("%s\n",s);return 0;}

Поки що це єдиний запис, який отримує найоптимальніше рішення кожного разу. Я б зауважив, що це і краще опорне рішення останнього місця. Насправді я не переконаний, що насправді існує кращий спосіб, який гарантує оптимальне рішення у кожному випадку, і поки що ніхто інший не довів іншого.
користувач

1
Поки ви не можете на самом деле знайти точне число кроків , він буде приймати, я не можу прийняти це рішення , навіть якщо воно є (теоретично) кращим.
Джо З.

Також розмір сітки становить 19, а не 9.
Joe Z.

Гаразд, я зафіксував розмір сітки. Хтось знає, як обчислити теоретичну мінімальну кількість необхідних кроків?
користувач

Ні. Для вирішення цього вам доведеться використовувати програму, яка є у вас зараз.
Джо З.
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.