BuildFun і SolveFun
Ну, це зайняло досить багато часу, і я не зовсім впевнений, чи вирішив шахрай чи ні. Хоча він має доступ до всього лабіринту весь час, він лише розглядає клітинку, в якій знаходиться, стіни, що оточують її, і якщо між ними немає стінки, клітини, що прилягають до неї. Якщо це суперечить правилам, будь ласка, повідомте мене, і я спробую це змінити.
У всякому разі, ось код:
#Architect function
def BuildFun(size,seed):
#Initialise grid and ensure inputs are valid
if size<15:size=15
if size>50:size=50
if seed<4:seed=4
if seed>size:seed=size
grid=[]
for x in range(size):
gridbuilder=[]
for y in range(size):gridbuilder.append([0,1,1])
grid.append(gridbuilder)
coords=[0,0]
grid[0][0][0]=1
#Generate maze
while 1:
#Choose a preffered direction based on location in grid and seed
pref=((((coords[0]+coords[1]+2)*int(size/2))%seed)+(seed%(abs(coords[0]-coords[1])+1)))%4
#Find legal moves
opt=[]
if coords[0]>0:opt+=[0] if grid[coords[0]-1][coords[1]][0]==0 else []
if coords[1]<size-1:opt+=[1] if grid[coords[0]][coords[1]+1][0]==0 else []
if coords[0]<size-1:opt+=[2] if grid[coords[0]+1][coords[1]][0]==0 else []
if coords[1]>0:opt+=[3] if grid[coords[0]][coords[1]-1][0]==0 else []
#There are legal moves
if len(opt)>0:
moved=False
while not moved:
#Try to move in preffered direction
if pref in opt:
if pref==0:
coords[0]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][2]=0
elif pref==1:
grid[coords[0]][coords[1]][1]=0
coords[1]+=1
grid[coords[0]][coords[1]][0]=1
elif pref==2:
grid[coords[0]][coords[1]][2]=0
coords[0]+=1
grid[coords[0]][coords[1]][0]=1
else:
coords[1]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][1]=0
moved=True
#Change preferred direction if unable to move
else:
pref+=1
if pref==4:pref=0
#There aren't legal moves
else:
moved=False
#Return to a previously visited location
if not moved:
try:
if grid[coords[0]-1][coords[1]][0]==1 and grid[coords[0]-1][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]-=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]+1][0]==1 and grid[coords[0]][coords[1]][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]+1][coords[1]][0]==1 and grid[coords[0]][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]-1][0]==1 and grid[coords[0]][coords[1]-1][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]-=1
moved=True
except:pass
#Check if finished
fin=True
for x in grid:
for y in x:
if y[0]==0:
fin=False
break
if not fin:break
if fin:break
for x in grid:
for y in x:
y[0]=0
#Find positions for start and finish such that the route between them is as long as possible
lsf=[[0,0],[0,0],0]
for y in range(size):
for x in range(size):
#Check all start positions
lengths=[]
coords=[[y,x,4,0]]
while len(coords)>0:
#Spread tracers out from start to the rest of the maze
for coord in coords:
opt=[]
if coord[0]>0:opt+=[0] if grid[coord[0]-1][coord[1]][2]==0 else []
opt+=[1] if grid[coord[0]][coord[1]][1]==0 else []
opt+=[2] if grid[coord[0]][coord[1]][2]==0 else []
if coord[1]>0:opt+=[3] if grid[coord[0]][coord[1]-1][1]==0 else []
try:opt.remove(coord[2])
except:pass
#Dead end, tracer dies and possible end point is recorded along with length
if len(opt)==0:
lengths.append([coord[0],coord[1],coord[3]])
coords.remove(coord)
else:
#Create more tracers at branch points
while len(opt)>1:
if opt[0]==0:coords.append([coord[0]-1,coord[1],2,coord[3]+1])
elif opt[0]==1:coords.append([coord[0],coord[1]+1,3,coord[3]+1])
elif opt[0]==2:coords.append([coord[0]+1,coord[1],0,coord[3]+1])
else:coords.append([coord[0],coord[1]-1,1,coord[3]+1])
del opt[0]
if opt[0]==0:
coord[0]-=1
coord[2]=2
coord[3]+=1
elif opt[0]==1:
coord[1]+=1
coord[2]=3
coord[3]+=1
elif opt[0]==2:
coord[0]+=1
coord[2]=0
coord[3]+=1
else:
coord[1]-=1
coord[2]=1
coord[3]+=1
#Find furthest distance and, if it's longer than the previous one, the start/end positions get updated
lengths=sorted(lengths,key=lambda x:x[2],reverse=True)
if lengths[0][2]>lsf[2]:lsf=[[y,x],[lengths[0][0],lengths[0][1]],lengths[0][2]]
#Find number of walls and output maze
w=draw(grid,size,lsf[0],lsf[1])
#Output maze information
print('Start = '+str(lsf[0]))
print('End = '+str(lsf[1]))
print('Distance = '+str(lsf[2]))
print('Walls = '+str(w))
print('Score = '+str(float(lsf[2])/float(w))[:5])
#Convert array grid to binary strings horizontal and vertical
horizontal=vertical=''
for y in range(size):
for x in range(size-1):vertical+=str(grid[y][x][1])
for y in range(size-1):
for x in range(size):horizontal+=str(grid[y][x][2])
#Save maze information to text file for use with SolveFun
save=open('Maze.txt','w')
save.write(str(size)+'\n'+str(lsf[0][0])+' '+str(lsf[0][1])+'\n'+str(lsf[1][0])+' '+str(lsf[1][1])+'\n'+horizontal+'\n'+vertical)
save.close()
#Solver function
def SolveFun():
try:
#Get maze information from text file
save=open('Maze.txt','r')
data=save.readlines()
save.close()
size=int(data[0])
s=data[1].rsplit(' ')
start=[int(s[0]),int(s[1])]
e=data[2].rsplit(' ')
end=[int(e[0]),int(e[1])]
horizontal=data[3].rstrip('\n')
vertical=data[4]
#Build maze from information
grid=[]
for y in range(size):
grid.append([])
for x in range(size):
grid[y].append([0,1,1])
for y in range(size):
for x in range(size-1):
grid[y][x][1]=int(vertical[y*(size-1)+x])
for y in range(size-1):
for x in range(size):
grid[y][x][2]=int(horizontal[y*size+x])
path=''
cpath=''
bs=0
pos=start[:]
grid[pos[0]][pos[1]][0]=1
while pos!=end:
#Want to move in direction of finish
if end[0]<pos[0] and pos[0]-end[0]>=abs(pos[1]-end[1]):pref=0
elif end[1]>pos[1] and end[1]-pos[1]>=abs(pos[0]-end[0]):pref=1
elif end[0]>pos[0] and end[0]-pos[0]>=abs(pos[1]-end[1]):pref=2
else:pref=3
#Find legal moves
opt=[]
if pos[0]>0:
if grid[pos[0]-1][pos[1]][2]==0:opt+=[0]if grid[pos[0]-1][pos[1]][0]==0 else[]
if pos[1]>0:
if grid[pos[0]][pos[1]-1][1]==0:opt+=[3]if grid[pos[0]][pos[1]-1][0]==0 else[]
if grid[pos[0]][pos[1]][2]==0:opt+=[2]if grid[pos[0]+1][pos[1]][0]==0 else[]
if grid[pos[0]][pos[1]][1]==0:opt+=[1]if grid[pos[0]][pos[1]+1][0]==0 else[]
if len(opt)>0:
moved=False
while not moved:
#Try to move in preferred direction
if pref in opt:
if pref==0:
pos[0]-=1
path+='0'
cpath+='0'
elif pref==1:
pos[1]+=1
path+='1'
cpath+='1'
elif pref==2:
pos[0]+=1
path+='2'
cpath+='2'
else:
pos[1]-=1
path+='3'
cpath+='3'
grid[pos[0]][pos[1]][0]=1
moved=True
#Change preferred direction by 1
else:
pref=(pref+1)%4
#No legal moves, backtrack
else:
bs+=1
grid[pos[0]][pos[1]][0]=2
if int(cpath[len(cpath)-1])==0:
pos[0]+=1
path+='2'
elif int(cpath[len(cpath)-1])==1:
pos[1]-=1
path+='3'
elif int(cpath[len(cpath)-1])==2:
pos[0]-=1
path+='0'
else:
pos[1]+=1
path+='1'
cpath=cpath[:len(cpath)-1]
#Output maze with solution as well as total steps and wasted steps
draw(grid,size,start,end)
print('\nPath taken:')
print(str(len(path))+' steps')
print(str(bs)+' backsteps')
print(str(bs*2)+' wasted steps')
except:print('Could not find maze')
def draw(grid,size,start,end):
#Build output in string d
d=' '
for x in range(size):d+=' '+str(x)[0]
d+='\n '
for x in range(size):d+=' ' if len(str(x))==1 else ' '+str(x)[1]
d+='\n '+'_'*(size*2-1)
w=0
for y in range(size):
d+='\n'+str(y)+' |' if len(str(y))==1 else '\n'+str(y)+' |'
for x in range(size):
if grid[y][x][2]:
if start==[y,x]:d+=UL.S+'S'+UL.E
elif end==[y,x]:d+=UL.S+'F'+UL.E
elif grid[y][x][0]==1:d+=UL.S+'*'+UL.E
else:d+='_'
w+=1
else:
if start==[y,x]:d+='S'
elif end==[y,x]:d+='F'
elif grid[y][x][0]==1:d+='*'
else:d+=' '
if grid[y][x][1]:
d+='|'
w+=1
else:d+=' '
#Output maze and return number of walls
print(d)
w-=size*2
return w
#Underlines text
class UL:
S = '\033[4m'
E = '\033[0m'
Я усвідомлюю, що це смішно довго і не особливо легко читати, але я лінивий, так це залишається.
BuildFun
Архітектор BuildFun - це досить проста програма, що генерує лабіринт, яка завжди створюватиме «ідеальний» лабіринт (той, у якому немає циклів, і де будь-які дві точки завжди матимуть рівно один шлях між ними). Це виходить з логіки виходу з насіннєвого введення, тобто генеровані лабіринти є псевдовипадковими з часто повторюваними візерунками і з однаковим насінням та розміром буде створений той самий лабіринт.
Після генерації лабіринту програма намагатиметься максимально оцінити показник лабіринту шляхом пошуку початкової та кінцевої точки, що призводить до найдовшого шляху між ними. Для цього він проходить через кожну початкову точку, розводить просліджувачі, щоб знайти кінцеву точку, віддалену від неї, і вибирає комбінацію з найдовшим шляхом.
Після цього він малює лабіринт, рахує стіни і виводить інформацію про лабіринт. Це початкова точка, кінцева точка, відстань між ними, кількість стін та оцінка. Він також форматує цю інформацію у вищеописаному стилі щодо розміру, початку та кінця, горизонтальних стін та вертикальних стін та зберігає це у текстовому файлі під назвою Maze.txt для подальшого використання.
SolveFun
Solver, SolveFun, використовує текстовий файл Maze.txt як вхідний і працює дуже схожим на архітектора. Для кожного ходу він вибиратиме напрямок, який хоче пройти, виходячи з його відносного положення до кінця, і тоді він буде дивитися на стіни, що його оточують. Якщо стіни там немає, вона перевірить, чи була вона у сусідній до неї комірці, а якщо ні, то буде додано як можливий варіант. Потім він рухатиметься у напрямку, найближчому до бажаного напрямку, за умови, що у нього є варіанти. Якщо у нього немає варіантів, він буде відслідковуватись, поки не з'явиться. Це триває, поки не досягне кінця.
По мірі руху він записує шлях, який він проходить в змінному шляху, який використовується в кінці для виведення загальної кількості кроків. Він також записує кількість разів, яку потрібно було відхилити, щоб використати для обчислення витрачених кроків наприкінці. Коли він досягне кінця, він виведе лабіринт найкоротшим шляхом від початку до кінця, позначеним на *
s.
Як бігати
Завдяки способу виведення лабіринту (який включає підкреслення певних символів), це потрібно запустити з командного рядка у формі
python -c 'import filename;filename.BuildFun(Size, Seed)'
і
python -c 'import filename;filename.SolveFun()'
де розмір є цілим числом від 15 до 50 (включно), а насіння - ціле число між 4 і розміром (включно).