Бінарне кодування дерева


12

Припустимо, у вас є повне бінарне дерево (тобто кожен внутрішній вузол має рівно два непусті нащадки). Кожен вузол містить ненульове ціле число. Вам дано завдання кодувати і декодувати дерево в / зі списку цілих чисел.

Дерево внутрішньо зберігається приблизно як:

struct node {
  int data;
  struct node *left, *right;
};

І вам доведеться реалізувати дві функції:

int *encode(struct node *root);
struct node *decode(int *array);

Від вас залежить, як ви кодуєте та декодуєте.

Бали за:

  • мінімальна довжина кодування
  • складність (ідеально лінійна за кількістю вузлів)
  • оригінальність

Немає балів за довжину вихідного коду, і ви не обмежені С.

Приклад дерева:

     5
    / \
   3   2
      / \
     2   1
    / \
   9   9

1
Вимоги до вводу та виводу не зашкодять.
Ясір Арсанукаєв

2
@Yasir: Алгоритм кодування - це ваша робота, тому я не можу забезпечити жодного вводу та виводу. int *- це чорна скринька для користувача.
Олександру

Чи існують якісь обмеження на діапазон цілих чисел? Більш конкретно, якщо ми використовуємо мову з довільно великими цілими числами, чи можемо ми використовувати це? І чи вимірюється розмір кодованих даних у кількості цілих чисел чи кількості байтів?
sepp2k

Чи повинні функції кодування та декодування не мати побічних ефектів (крім розподілу пам'яті)? Або вони можуть, наприклад, зберігати дані в глобальних змінних?
sepp2k

1
Якщо припустити, що цілі числа даних є власне 32-бітовими цілими числами, існує просте кодування, яке використовує лише 32 * n біт.
Анон.

Відповіді:


2

~ 1,03 Н

Здається, що всі відповіді на даний момент потребують щонайменше 2 * N * 32-біт для зберігання. (За винятком рішень на мовах, які дозволяють цілі значення, що перевищують 32 біти, як, наприклад, рішення Haskell і Ruby, але вони все ще будуть займати додаткові байти для кодування, коли дані перевищують 16K.)

Ось рішення, яке займає лише N + стелю (N / 32) +1 ints зберігання. Це наближається до 1,03125 N для великих N, а під 1,1 N для всіх N більше 20.

Ідея полягає в тому, щоб зберігати додатковий біт для кожного вузла, де 1 - "hasChildren". Ці шматочки упаковані в N / 32 слова вперед.

int* encodeHelper(Node* n, int* code, int* pos, int* flag)
{
   int hasKids = (n->left!=0);
   code[*flag/32]|=hasKids<<(*flag&31);
   *flag+=1;
   if (hasKids) bencodeHelper(n->left, code, pos, flag);
   code[*pos]=n->data;
   *pos+=1;
   if (hasKids) bencodeHelper(n->right, code, pos, flag);
   return code;
}

int* encode(Node* h, int* sizeOut)
{
   int nnodes=countNodes(h);
   int nflags = (int)ceil(nnodes/32.0);
   int pos=nflags+1;
   int flag=32;
   int* out;
   *sizeOut = 1+nnodes+nflags;
   out = calloc(*sizeOut, sizeof(int));
   if (!h) return out;
   out[0]=nflags+1; //store start of data
   return encodeHelper(h,out,&pos,&flag);
}

Node* decodeHelper(int* code, int* pos, int* flag)
{
   Node*n = calloc(1, sizeof(Node));
   int hasKids = code[*flag/32]>>(*flag&31)&1;
   *flag+=1;
   if (hasKids) n->left = bdecodeHelper(code, pos, flag);
   n->data = code[*pos];
   *pos+=1;
   if (hasKids) n->right = bdecodeHelper(code, pos, flag);
   return n;
}

Node* decode(int* code)
{
   int flag=32;
   int pos=code[0];
   if (!pos) return NULL;
   return decodeHelper(code, &pos, &flag);
}

(реалізація конкурентів тут)


5

Ця програма Haskell кодує дерево з n вузлів у n Integers. Трюк полягає в тому, що він кодує дані вузла вдвічі, а потім використовує біт нижнього порядку, щоб вказати, чи це листовий вузол, чи внутрішній вузол.

Технічно Parserмонада тут є надмірним вбивством, оскільки створений лише один аналізатор, decoderі я міг би прямо туди вкласти ланцюжок синтаксичного аналізатора. Але таким чином декодер є дуже зрозумілим, і, Parserнезважаючи на його невеликий розмір, є розумним простим розбором рамки.

import Control.Monad (ap)

data Tree = Leaf Integer | Node Integer Tree Tree
  deriving (Eq, Show)

encode :: Tree -> [Integer]
encode (Leaf n)     = [n*2]
encode (Node n t u) = (n*2+1) : encode t ++ encode u

decode :: [Integer] -> Maybe Tree
decode = fullyParse decoder
  where
    decoder :: Parser Integer Tree
    decoder = do
      i <- next
      let n = i `div` 2
      if even i
        then return (Leaf n)
        else return (Node n) `ap` decoder `ap` decoder

-- A simple Parsing Monad
data Parser a b = P { runParser :: [a] -> Maybe (b, [a]) }

instance Monad (Parser a) where
  return a = P ( \ts -> Just (a, ts) )
  p >>= q  = P ( \ts -> runParser p ts >>= (\(v,ts') -> runParser (q v) ts') )
  fail _   = P ( const Nothing )

next :: Parser a a
next = P n
 where n (t:ts) = Just (t,ts)
       n _      = Nothing

fullyParse :: Parser a b -> [a] -> Maybe b
fullyParse p ts = runParser p ts >>= consumedResult
  where
    consumedResult (v,[]) = Just v
    consumedResult _      = Nothing

-- Example
main :: IO ()
main = do
    putStrLn $ "example:  " ++ show ex
    putStrLn $ "encoding: " ++ show encEx
    putStrLn $ "decoding: " ++ show decEx
    putStrLn $ "worked?   " ++ show worked
  where
    ex = Node 5
          (Leaf 3)
          (Node 2
            (Node 2
              (Leaf 9)
              (Leaf 9)
            )
            (Leaf 1)
          )
    encEx = encode ex
    decEx = decode encEx
    worked = maybe False (ex ==) decEx

Якщо це зробити, ви отримаєте:

> runhaskell TreeEncoding.hs 
example:  Node 5 (Leaf 3) (Node 2 (Node 2 (Leaf 9) (Leaf 9)) (Leaf 1))
encoding: [11,6,5,5,18,18,2]
decoding: Just (Node 5 (Leaf 3) (Node 2 (Node 2 (Leaf 9) (Leaf 9)) (Leaf 1)))
worked?   True

4

В С

#include <stdlib.h>
#include <stdio.h>

struct Node;
typedef struct Node Node;

struct Node
{
    int   data;
    Node* left;
    Node* right;
};
/* Private Functions */
static int*  encodeNode(Node* tree, int* store);
static Node* decodeNode(int** store);

/* Public Functions */
Node*   newNode(int data,Node* left,Node* right);
void    deleteTree(Node* tree);
int     countNodesTree(Node* tree);
int*    encode(Node *tree);
Node*   decode(int* store);
void    printTree(Node* tree);

Node* newNode(int data,Node* left,Node* right)
{
    Node* result    = (Node*)malloc(sizeof(Node));
    result->data    = data;
    result->left    = left;
    result->right   = right;

    return result;
}

void deleteTree(Node* tree)
{
    if (tree == NULL)
    {   return;
    }

    deleteTree(tree->left);
    deleteTree(tree->right);
    free(tree);
}

int countNodesTree(Node* tree)
{
    if (tree == NULL)
    {   return 0;
    }

    return    countNodesTree(tree->left)
            + countNodesTree(tree->right)
            + 1;
}

void printTree(Node* tree)
{
    if (tree == NULL)
    {
        fprintf(stdout, "- ");
    }
    else
    {
        fprintf(stdout, "%d ", tree->data);
        printTree(tree->left);
        printTree(tree->right);
    }
};

Код:

int* encode(Node *tree)
{
    int     nodeCount   = countNodesTree(tree);
    int*    result      = (int*)malloc(sizeof(int) * (nodeCount * 2 + 1));

    // Put the node count in the first element.
    // This makes it easy to also serialize this object for transport
    // i.e. you can put it in a file or a stream (socket) and easily recover it.
    result[0]           = nodeCount;
    encodeNode(tree, result + 1);
    return result;
}

int* encodeNode(Node* tree, int* store)
{
    if (tree != NULL)
    {
        store[0]    = tree->data;
        /*
         * Slight overkill. for this question.
         * But works and makes future enhancement easy
         */
        store[1]    = (tree->left  == NULL ? 0 : 1)
                    + (tree->right == NULL ? 0 : 2);
        store += 2;

        store       = encodeNode(tree->left,  store);
        store       = encodeNode(tree->right, store);
    }
    return store;
}

Декодування:

Node* decode(int* store)
{
    if (store == NULL)
    { fprintf(stderr, "Bad Input terminating: encode() always return non NULL\n");
      exit(1);
    }

    if (store[0] == 0)
    {
        return NULL;
    }

    store++;
    return decodeNode(&store);
}

Node* decodeNode(int** store)
{
    int     value   = (*store)[0];
    int     flag    = (*store)[1];
    (*store) += 2;

    Node*   left    = flag & 1 ? decodeNode(store) : NULL;
    Node*   right   = flag & 2 ? decodeNode(store) : NULL;

    return newNode(value, left, right);
}

Основні:

int main()
{
    Node*   t = newNode(5,
                        newNode(3, NULL, NULL),
                        newNode(2,
                                newNode(2,
                                        newNode(9, NULL, NULL),
                                        newNode(9, NULL, NULL)
                                       ),
                                newNode(1, NULL, NULL)
                               )
                       );

    printTree(t);
    fprintf(stdout,"\n");

    int*    e   = encode(t);
    Node*   d   = decode(e);
    printTree(d);
    fprintf(stdout,"\n");

    free(e);
    deleteTree(d);
    deleteTree(t);
}

Примітка. Кожен вузол кодується у вигляді двох цілих чисел (плюс один int для кількості вузлів).
Отже, надане дерево кодує так:

 7, 5, 3, 3, 0, 2, 3, 2, 3, 9, 0, 9, 0 1, 0
 ^  ^
 ^  ^ Node 1
 ^
 Count

3

У Ruby з таким же кодуванням, що і @MtnViewMark :

class Node
        def initialize(data, left = nil, right = nil)
                @data, @left, @right = data, left, right
        end

        def encode
                "%d %s %s" % [@data<<1|1, @left.encode, @right.encode]
        end

        class << self
                def decode(str)
                        _decode(str.split.map &:to_i)
                end

                private

                def _decode(a)
                        n = a.shift
                        if n & 1 == 1
                                Node.new(n>>1, _decode(a), _decode(a))
                        else
                                Leaf.new(n>>1)
                        end
                end
        end
end

class Leaf < Node
        def encode
                (@data<<1).to_s
        end
end

tree=Node.decode("11 6 5 5 18 18 2")
print tree.encode

Вартість становить одне ціле число на вузол ( data << 1 | has_childs):

11 6 5 5 18 18 2

Нічого собі - це виглядає худорляво і елегантно. Однак це не займає масив int, чи не так?
користувач невідомий

2

З огляду на двійкове дерево з nвузлами, це кодує його у списку 2n + 1цілих чисел. Як алгоритми кодування, так і декодування мають O(n)складність.

Я використовую ціле число як маркер дозорного при кодуванні, вказуючи, коли я розгортаю рекурсію. Потім, коли я розшифровую, я поміщаю створені я дерева дерева в стек (сортування) і використовую 0 в списку, щоб відслідковувати, куди додати наступний вузол. Я не пробував, але я впевнений, що декодування порушиться, якби дерево було не повним.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

// Prototypes
struct BTnode;
struct BTnode * bt_add_left(struct BTnode * node, int data);
struct BTnode * bt_add_right(struct BTnode * node, int data);
int             bt_depth(struct BTnode * tree);
int             bt_encode_preorder(int * list, struct BTnode * tree, int index);
struct BTnode * bt_node_create(int data);
int             bt_node_delete(struct BTnode * node);
void            bt_print_preorder(struct BTnode * tree);
int *           encode(struct BTnode * tree);
struct BTnode * decode(int * list);

// Binary tree node
struct BTnode
{
  int data;
  struct BTnode *left, *right;
};

// Add node to this node's left
struct BTnode * bt_add_left(struct BTnode * node, int data)
{
  struct BTnode * newnode = bt_node_create(data);
  node->left = newnode;
  return newnode;
}

// Add node to this node's right
struct BTnode * bt_add_right(struct BTnode * node, int data)
{
  struct BTnode * newnode = bt_node_create(data);
  node->right = newnode;
  return newnode;
}

// Determine depth of the tree
int bt_depth(struct BTnode * tree)
{
  int depth;
  int leftdepth = 0;
  int  rightdepth = 0;
  if( tree == NULL ) return 0;

  if( tree->left != NULL )
    leftdepth = bt_depth(tree->left);
  if( tree->right != NULL )
    rightdepth = bt_depth(tree->right);

  depth = leftdepth;
  if(rightdepth > leftdepth)
    depth = rightdepth;

  return depth + 1;
}

// Recursively add node values to integer list, using 0 as an unfolding sentinel
int bt_encode_preorder(int * list, struct BTnode * tree, int index)
{
  list[ index++ ] = tree->data;

  // This assumes the tree is complete (i.e., if the current node does not have
  // a left child, then it does not have a right child either)
  if( tree->left != NULL )
  {
    index = bt_encode_preorder(list, tree->left, index);
    index = bt_encode_preorder(list, tree->right, index);
  }

  // Add sentinel
  list[ index++ ] = 0;
  return index;
}

// Allocate memory for a node
struct BTnode * bt_node_create(int data)
{
  struct BTnode * newnode = (struct BTnode *) malloc(sizeof(struct BTnode));
  newnode->left = NULL;
  newnode->right = NULL;
  newnode->data = data;
  return newnode;
}

// Free node memory
int bt_node_delete(struct BTnode * node)
{
  int data;
  if(node == NULL)
    return 0;
  data = node->data;

  if(node->left != NULL)
    bt_node_delete(node->left);
  if(node->right != NULL)
    bt_node_delete(node->right);

  free(node);
  return data;
}

// Print all values from the tree in pre-order
void bt_print_preorder(struct BTnode * tree)
{
  printf("%d ", tree->data);
  if(tree->left != NULL)
    bt_print_preorder(tree->left);
  if(tree->right != NULL)
    bt_print_preorder(tree->right);
}

// Decode binary tree structure from a list of integers
struct BTnode * decode(int * list)
{
  struct BTnode * tree;
  struct BTnode * nodestack[ list[0] ];
  int i,j;

  // Handle trivial case
  if( list == NULL ) return NULL;

  tree = bt_node_create( list[1] );
  nodestack[ 1 ] = tree;

  j = 1;
  for(i = 2; i < list[0]; i++)
  {
    if( list[i] == 0 )
    {
      //printf("popping\n");
      j--;
    }
    else
    {
      if( nodestack[j]->left == NULL )
      {
        //printf("Adding %d to left of %d\n", list[i], nodestack[j]->data);
        nodestack[ j+1 ] = bt_add_left(nodestack[j], list[i]);
        j++;
      }
      else
      {
        //printf("Adding %d to right of %d\n", list[i], nodestack[j]->data);
        nodestack[ j+1 ] = bt_add_right(nodestack[j], list[i]);
        j++;
      }
    }
  }

  return tree;
}

// Encode binary tree structure as a list of integers
int * encode(struct BTnode * tree)
{
  int maxnodes, depth, length;
  int * list;
  int j;

  // Handle trivial case
  if(tree == NULL) return NULL;

  // Calculate maximum number of nodes in the tree from the tree depth
  maxnodes = 1;
  depth = bt_depth(tree);
  for(j = 0; j < depth; j++)
  {
    maxnodes += pow(2, j);
  }

  // Allocate memory for the list; we need two ints for each value plus the
  // first value in the list to indicate length
  list = (int *) malloc( ((maxnodes * 2)+1) * sizeof(int));
  length = bt_encode_preorder(list, tree, 1);
  list[ 0 ] = length;
  return list;
}

int main()
{
  struct BTnode * tree;
  struct BTnode * newtree;
  int * list;
  int i;

  /* Provided example

        5
       / \
      3   2
         / \
        2   1
       / \
      9   9
  */
  tree = bt_node_create(5);
  bt_add_left(tree, 3);
  struct BTnode * temp = bt_add_right(tree, 2);
  bt_add_right(temp, 1);
  temp = bt_add_left(temp, 2);
  bt_add_left(temp, 9);
  bt_add_right(temp, 9);
  printf("T (traversed in pre-order):  ");
  bt_print_preorder(tree);
  printf("\n");

  list = encode(tree);
  printf("T (encoded as integer list): ");
  for(i = 1; i < list[0]; i++)
    printf("%d ", list[i]);
  printf("\n");

  newtree = decode(list);
  printf("T' (decoded from int list):  ");
  bt_print_preorder(newtree);
  printf("\n\n");


  // Free memory
  bt_node_delete(tree);
  bt_node_delete(newtree);
  free(list);
  return 0;
}

Збережено це як encode.cтоді складене та виконане. Ця програма використовує наведене вами дерево прикладу, і я перевірив її на кількох інших успішно.

$ gcc -Wall -lm -o encode encode.c
$ ./encode 
T (traversed in pre-order):  5 3 2 2 9 9 1 
T (encoded as integer list): 5 3 0 2 2 9 0 9 0 0 1 0 0 0 
T' (decoded from int list):  5 3 2 2 9 9 1

Це майже те, що я мав на увазі :).
Олександру

чи не вдасться розшифрувати це, якщо дані містять 0?
AShelly

@AShelly Він прямо сказав, що 0 не буде включено до дерева. Якби це було, то так, це не вдалося б.
Деніел Даніель

2

Мій код кодує дерево в передпорядковому обході, кожен лист у двох вкладишах (його дані супроводжуються 0) і кожен внутрішній вузол в одному int (за його даними слідує його ліва дитина, потім права). Для повного двійкового дерева (як ви його визначите) з n вузлами, n має бути непарним, і є (n + 1) / 2 листя та (n-1) / 2 внутрішніх вузла, тож це 3n / 2 + 1 / 2 цілих числа для кодування.

попередження: не перевірено, просто введіть його.

struct node {
  int data;
  struct node *left, *right;
};

void encodeInternal(struct node *root, vector<int> *buf) {
  buf->push_back(root->data);
  if (root->left) {
    encodeInternal(root->left, buf);
    encodeInternal(root->right, buf);
  } else {
    buf->push_back(0);
  }
}
int *encode(struct node *root) {
  vector<int> buf;
  encodeInternal(root, &buf);
  return &buf[0];
}

struct decodeResult {
  int encoded_size;
  struct node *n;
}
struct decodeResult decodeInternal(int *array) {
  struct node *n = (struct node*)malloc(sizeof(struct node));
  n->data = array[0];
  if (array[1] == 0) {
    n->left = n->right = NULL;
    return (decodeResult){2, n};
  } else {
    decodeResult L = decodeInternal(array + 1);
    decodeResult R = decodeInternal(array + 1 + L.encoded_size);
    n->left = L.n;
    n->right = R.n;
    return (decodeResult){1 + L.encoded_size + R.encoded_size, n};
  }
}
struct node *decode(int *array) {
  return decodeInternal(array).n;
}

1

Ось моя спроба. Він зберігає дерево в масиві розміром 2 ** глибини + 1. Він використовує a[0]для утримання розміру та a[size]утримування індексу першого "порожнього вузла", з яким він стикається, в ході першої глибини. (Порожній вузол - це місце, де зберігалася б дитина, якби у батьків був такий). Кожен порожній вузол містить індекс наступного порожнього вузла, який буде зустрічатися.

Ця схема дозволяє уникнути резервування бітів для позначення дітей презентації, тому кожен вузол може використовувати весь цілий діапазон. Це також дозволяє незбалансовані дерева - батько може мати лише одну дитину.

вихід:

empty tree:  [0]
head node only:  [2,5,0]
example tree: [16,5,3,2,5,14,2,1,0,0, 0,0,9,9,15,0,4];

Кодер:

//utility
 int findDepth(Node* n) {
    int l = 0 ,r = 0;
    if (n) {
       l = 1 + findDepth(n->left);
       r = 1 + findDepth(n->right);
    }
    return ( l > r ) ? l : r;
 }

//Encode Function
 int* encodeTree(Node* head) {
    int* out;
    int depth = findDepth(head);
    int size = depth>0;
    while (depth--) size*=2;
    out = calloc(size+1,sizeof(int));
    out[0]=size;
    encodeNode(head, out,1, out+size);
    return out;
 }

 void encodeNode(Node* n, int* a, int idx, int* pEmpty) {
    if (n) {
       a[idx]=n->data;
       encodeNode(n->left,a,idx*2,pEmpty);
       encodeNode(n->right,a,idx*2+1,pEmpty);
    }
    else if (idx<a[0]) {
       *pEmpty = idx;
       pEmpty = a+idx;
    }
 }

Декодер:

 //Decode Function
 Node* decodeArray(int* a) {
    return (a[0]) ?  decodeNode(a,1,a+a[0]) : NULL;
 }

 Node* decodeNode(int* a, int idx, int* pEmpty) {
    Node* n = NULL;
    if (idx== *pEmpty)
       *pEmpty=a[idx];
    else {
       n = calloc(1,sizeof(Node));
       n->data = a[idx];
       if (idx*2<a[0]) {
          n->left = decodeNode(a, idx*2, pEmpty);
          n->right = decodeNode(a, idx*2+1, pEmpty);
       }
    }
    return n;
 }

(дякую @daniel sobral за виправлення форматування)


1

Scala:

trait Node {
  def encode (): Array[Int]
}

case object Node {
  def decode (a: Array[Int]): InnerNode = {
    if (a.length == 1) InnerNode (a(0)) else {
      val r = InnerNode (a(1)) 
      val l = decode (a.tail.tail) 
      InnerNode (a(0), l, r) 
    }
  }
}

case object Leaf extends Node {
  def encode (): Array[Int] = Array.empty
}

case class InnerNode (val data: Int, var l: Node=Leaf, var r: Node=Leaf) extends Node {
  def encode (): Array[Int] = Array (data) ++ r.encode () ++ l.encode () 
}

object BinTreeTest extends App {
  println (Node.decode (Array (1, 2, 3, 4, 5)).encode.mkString (", "))
}

Це підхід, який використовує застарілий синтаксис, але компілюється без помилок у Scala 2.9.1. Він генерує Дерево і декодує кожне кодоване Дерево до того ж масиву, який використовується для кодування. Можливо, сьогодні я якось позбудусь застарілих попереджень.

Нічого собі - це було просто. Перша ідея спрацювала негайно.

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.