Цифрова сума центральних біноміальних коефіцієнтів


13

Завдання полягає в тому, щоб просто побачити, наскільки швидше ви можете обчислити n вибрати n / 2 (для навіть n), ніж вбудована функція в python. Звичайно, для великих n це досить велика кількість, тому замість виведення цілого числа слід виводити суму цифр. Наприклад, для n = 100000, відповідь є 135702. Бо n=1000000воно є 1354815.

Ось код python:

from scipy.misc import comb
def sum_digits(n):
   r = 0
   while n:
       r, n = r + n % 10, n / 10
   return r
sum_digits(comb(n,n/2,exact=True))

Ваш рахунок є (highest n on your machine using your code)/(highest n on your machine using my code). Ваш код повинен припинитись через 60 секунд або менше.

Ваша програма повинна дати правильний вихід для всіх рівних n: 2 <= n <= (ваш найвищий n)

Ви не можете використовувати будь-який вбудований код або бібліотеки, які обчислюють біноміальні коефіцієнти або значення, які можна швидко перетворити на двочленні коефіцієнти.

Ви можете використовувати будь-яку мову на ваш вибір.


Провідна відповідь Поточна провідна відповідь з дивовижними 680,09 - це простохальф.


2
Чи слід подавати рішення в python або мовою, що вибирається?

Можна написати звичайну програму, яка робить це на сучасному комп’ютері і nдобре перебирає мільйони, в той час як я сумніваюся, що функція Python впорається з чимось більшим, ніж n = 1e5без задухи.
COTO

@Alessandro Ви можете використовувати будь-яку мову на ваш вибір. Єдине обмеження полягало в тому, що ви не можете використовувати вбудовані функції для обчислення коефіцієнтів.

2
Чи дозволено функціональні функції? Я припускав, що не тому, що їх можна "швидко перетворити на двочленні коефіцієнти" (вся справа - це лише одна факторія, поділена на іншу квадратичну квадратику), але оскільки відповідь зараз використовується, ясність буде непоганою.
Геобіт

1
@Comintern: Я успішно повторив цю точку відліку з 287mil за 1 хв, або 169mil за 35 секунд! :)
justhalf

Відповіді:


9

C ++ (GMP) - (287 000 000/422 000) = 680,09

Безсоромно поєднуйте теорему Кумера з xnor та GMP від ​​qwr. Ще навіть не близький до рішення Go, не знаю, чому.

Редагувати: Дякую Кіту Рандалу за нагадування, що множення швидше, якщо число схоже за розміром. Я реалізував багаторівневе множення, подібне до концепції злиття пам'яті щодо управління пам'яттю. І результат вражаючий. Те, що раніше було 51, тепер займає лише 0,5 секунди (тобто 100-кратне поліпшення !!)

СТАРИЙ КОД (n = 14 000 000)
Проведено просіювання в 0,343 с
Виконано обчислення бінома в 51,929 с
Виконано підсумовування за 0,901 с
14000000: 18954729

реальні 0м53.194с
користувач 0m53.116s
sys 0m0.060s

НОВИЙ КОД (n = 14 000 000)
Проведено просіювання в 0,343 с
Виконано обчислення біному в 0,552 с
Зроблено підсумовування за 0,902
14000000: 18954729

реальні 0м1.804с
користувач 0m1.776s
sys 0m0.023s

Пробіг на n=287,000,000

Проведено просіювання в 4.211
Виконано обчислення біному в 17.934
Виконано підсумовування за 37.677 с
287000000: 388788354

реальні 0м59.928с
користувач 0m58.759s
sys 0m1.116s

Кодекс. Компілювати з-lgmp -lgmpxx -O3

#include <gmpxx.h>
#include <iostream>
#include <time.h>
#include <cstdio>

const int MAX=287000000;
const int PRIME_COUNT=15700000;

int primes[PRIME_COUNT], factors[PRIME_COUNT], count;
bool sieve[MAX];
int max_idx=0;

void run_sieve(){
    sieve[2] = true;
    primes[0] = 2;
    count = 1;
    for(int i=3; i<MAX; i+=2){
        sieve[i] = true;
    }
    for(int i=3; i<17000; i+=2){
        if(!sieve[i]) continue;
        for(int j = i*i; j<MAX; j+=i){
            sieve[j] = false;
        }
    }
    for(int i=3; i<MAX; i+=2){
        if(sieve[i]) primes[count++] = i;
    }
}

mpz_class sum_digits(mpz_class n){
    clock_t t = clock();
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0;str[i]>0;i++){
        result+=str[i]-48;
    }
    printf("Done summing in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

mpz_class nc2_fast(const mpz_class &x){
    clock_t t = clock();
    int prime;
    const unsigned int n = mpz_get_ui(x.get_mpz_t());
    const unsigned int n2 = n/2;
    unsigned int m;
    unsigned int digit;
    unsigned int carry=0;
    unsigned int carries=0;
    mpz_class result = 1;
    mpz_class prime_prods = 1;
    mpz_class tmp;
    mpz_class tmp_prods[32], tmp_prime_prods[32];
    for(int i=0; i<32; i++){
        tmp_prods[i] = (mpz_class)NULL;
        tmp_prime_prods[i] = (mpz_class)NULL;
    }
    for(int i=0; i< count; i++){
        prime = primes[i];
        carry=0;
        carries=0;
        if(prime > n) break;
        if(prime > n2){
            tmp = prime;
            for(int j=0; j<32; j++){
                if(tmp_prime_prods[j] == NULL){
                    tmp_prime_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
                    tmp_prime_prods[j] = (mpz_class)NULL;
                }
            }
            continue;
        }
        m=n2;
        while(m>0){
            digit = m%prime;
            carry = (2*digit + carry >= prime) ? 1 : 0;
            carries += carry;
            m/=prime;
        }
        if(carries>0){
            tmp = 0;
            mpz_ui_pow_ui(tmp.get_mpz_t(), prime, carries);
            for(int j=0; j<32; j++){
                if(tmp_prods[j] == NULL){
                    tmp_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prods[j].get_mpz_t());
                    tmp_prods[j] = (mpz_class)NULL;
                }
            }
        }
    }
    result = 1;
    prime_prods = 1;
    for(int j=0; j<32; j++){
        if(tmp_prods[j] != NULL){
            mpz_mul(result.get_mpz_t(), result.get_mpz_t(), tmp_prods[j].get_mpz_t());
        }
        if(tmp_prime_prods[j] != NULL){
            mpz_mul(prime_prods.get_mpz_t(), prime_prods.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
        }
    }
    mpz_mul(result.get_mpz_t(), result.get_mpz_t(), prime_prods.get_mpz_t());
    printf("Done calculating binom in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

int main(int argc, char* argv[]){
    const mpz_class n = atoi(argv[1]);
    clock_t t = clock();
    run_sieve();
    printf("Done sieving in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    std::cout << n << ": " << sum_digits(nc2_fast(n)) << std::endl;
    return 0;
}

2
Множення є більш ефективним, якщо обидва операнди мають однаковий розмір. Ви завжди множите велику кількість разів на мало число. Якщо ви кілька разів поєднуєте невеликі числа в парах, це може бути швидше (але забирайте більше пам'яті).
Кіт Рендалл

Нічого собі, це має велике значення. Це швидше експоненціально. Я можу досягти 169мл зараз за 35 сек.
justhalf

Нічого так! Яка розподіл часу для різних частин вашого коду?

Я вже це виклав у своїй відповіді. 4s в генеруванні простих чисел до n, 18s обчисленні центрального біноміального коефіцієнта, а решта 37s при перетворенні результату в рядок і підсумовуванні цифри.
Justhalf

1
Я вважаю, що цій відповіді слід сприяти будь-які бібліотеки з відкритим кодом, які обчислюють біноміальні коефіцієнти. Я не можу повірити, що хтось інший має такий швидкий код!

7

Перехід, 33,96 = (16300000/480000)

package main

import "math/big"

const n = 16300000

var (
    sieve     [n + 1]bool
    remaining [n + 1]int
    count     [n + 1]int
)

func main() {
    println("finding primes")
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }
        for i := p * p; i <= n; i += p {
            sieve[i] = true
        }
    }

    // count net number of times each prime appears in the result.
    println("counting factors")
    for i := 2; i <= n; i++ {
        remaining[i] = i
    }
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }

        for i := p; i <= n; i += p {
            for remaining[i]%p == 0 { // may have multiple factors of p
                remaining[i] /= p

                // count positive for n!
                count[p]++
                // count negative twice for ((n/2)!)^2
                if i <= n/2 {
                    count[p] -= 2
                }
            }
        }
    }

    // ignore all the trailing zeros
    count[2] -= count[5]
    count[5] = 0

    println("listing factors")
    var m []uint64
    for i := 0; i <= n; i++ {
        for count[i] > 0 {
            m = append(m, uint64(i))
            count[i]--
        }
    }

    println("grouping factors")
    m = group(m)

    println("multiplying")
    x := mul(m)

    println("converting to base 10")
    d := 0
    for _, c := range x.String() {
        d += int(c - '0')
    }
    println("sum of digits:", d)
}

// Return product of elements in a.
func mul(a []uint64) *big.Int {
    if len(a) == 1 {
        x := big.NewInt(0)
        x.SetUint64(a[0])
        return x
    }
    m := len(a) / 2
    x := mul(a[:m])
    y := mul(a[m:])
    x.Mul(x, y) // fast because x and y are about the same length
    return x
}

// return a slice whose members have the same product
// as the input slice, but hopefully shorter.
func group(a []uint64) []uint64 {
    var g []uint64
    r := uint64(1)
    b := 1
    for _, x := range a {
        c := bits(x)
        if b+c <= 64 {
            r *= x
            b += c
        } else {
            g = append(g, r)
            r = x
            b = c
        }
    }
    g = append(g, r)
    return g
}

// bits returns the number of bits in the representation of x
func bits(x uint64) int {
    n := 0
    for x != 0 {
        n++
        x >>= 1
    }
    return n
}

Працює шляхом підрахунку всіх простих факторів у чисельнику та знаменнику та скасування відповідних факторів. Помножте залишки, щоб отримати результат.

Більше 80% часу витрачається на переведення на базу 10. Тут повинен бути кращий спосіб зробити це ...


Для проблем, які потребують друку великих номерів у базі 10, я зазвичай вважаю корисним написати власний клас BigInteger, який зберігає числа в базі 1E9 ~ 2 ^ 30.
Пітер Тейлор

Наразі ви перемагаєте на відстані однієї милі, як кажуть.

@PeterTaylor: Я спробував це, але для цього потрібно багато% 1e9 у коді множення, що робить множення повільним.
Кіт Рендалл

6

Python 3 (8,8 = 2,2 мільйона / 0,25 мільйона)

Це в Python, який невідомий швидкості, тому ви, ймовірно, можете краще перенести це на іншу мову.

Генератор Primes взятий з цього конкурсу StackOverflow .

import numpy
import time

def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k/3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)/3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

t0 = time.clock()

N=220*10**4
n=N//2

print("N = %d" % N)
print()

print("Generating primes.")
primes = primesfrom2to(N)

t1 = time.clock()
print ("Time taken: %f" % (t1-t0))

print("Computing product.")
product = 1

for p in primes:
    p=int(p)
    carries = 0 
    carry = 0

    if p>n:
        product*=p
        continue

    m=n

    #Count carries of n+n in base p as per Kummer's Theorem
    while m:
        digit = m%p
        carry = (2*digit + carry >= p)
        carries += carry
        m//=p

    if carries >0:
        for _ in range(carries):
            product *= p

    #print(p,carries,product)

t2 = time.clock()
print ("Time taken: %f" % (t2-t1))

print("Converting number to string.")

# digit_sum = 0
# result=product

# while result:
    # digit_sum+=result%10
    # result//=10

digit_sum = 0
digit_string = str(product)

t3 = time.clock()
print ("Time taken: %f" % (t3-t2))

print("Summing digits.")
for d in str(digit_string):digit_sum+=int(d)

t4 = time.clock()
print ("Time taken: %f" % (t4-t3))
print ()

print ("Total time: %f" % (t4-t0))
print()
print("Sum of digits = %d" % digit_sum)

Основна ідея алгоритму полягає у використанні теореми Куммера для отримання первинної факторизації двочлена. Для кожного найвищого класу ми дізнаємось про найвищу силу, яка ділить відповідь, і помножимо працюючий продукт на таку силу простого. Таким чином, нам потрібно помножити лише один раз на кожне найголовніше у простому факторизації відповіді.

Вихідні дані, що показують поділ часу

N = 2200000
Generating primes.
Time taken: 0.046408
Computing product.
Time taken: 17.931472
Converting number to string.
Time taken: 39.083390
Summing digits.
Time taken: 1.502393

Total time: 58.563664

Sum of digits = 2980107

Дивно, але більшість часу витрачається на перетворення числа в рядок для підведення його цифр. Крім того, дивно, що перетворення в рядок було набагато швидшим, ніж отримання цифр з повторення, %10і //10, хоча цілий рядок, мабуть, повинен зберігатися в пам'яті.

Створення прайменів займає незначний час (і, отже, я не відчуваю несправедливого копіювання існуючого коду). Підбиття цифр швидко. Фактичне множення займає третину часу.

Зважаючи на те, що підсумовування цифр здається обмежуючим фактором, можливо, алгоритм множення чисел у десятковому поданні в цілому заощадить час шляхом скорочення двійкового / десяткового перетворення.


Це дуже вражає і змушує задуматися, чому cpython не використовує вашу реалізацію!

3

Java (оцінка 22500/365000 = 0,062)

У мене немає Python на цій машині, тому якщо хтось міг би забити це, я був би вдячний. Якщо ні, то доведеться почекати.

Основою цієї реалізації є

(2nn)=k=0n(nk)2

Вузьке місце є доповненням для обчислення відповідного розділу трикутника Паскаля (90% часу роботи), тому використання кращого алгоритму множення не допоможе.

Зауважте, що те, що викликає питання, n- це те, що я дзвоню 2n. Аргумент командного рядка - це те, що викликає питання n.

public class CodeGolf37270 {
    public static void main(String[] args) {
        if (args.length != 1) {
            System.err.println("Usage: java CodeGolf37270 <n>");
            System.exit(1);
        }

        int two_n = Integer.parseInt(args[0]);
        // \binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2
        // Two cases:
        //   n = 2m: \binom{4m}{2m} = \binom{2m}{m}^2 + 2\sum_{k=0}^{m-1} \binom{2m}{k}^2
        //   n = 2m+1: \binom{4m+2}{2m+1} = 2\sum_{k=0}^{m} \binom{2m+1}{k}^2
        int n = two_n / 2;
        BigInt[] nCk = new BigInt[n/2 + 1];
        nCk[0] = new BigInt(1);
        for (int k = 1; k < nCk.length; k++) nCk[k] = nCk[0];
        for (int row = 2; row <= n; row++) {
            BigInt tmp = nCk[0];
            for (int col = 1; col < row && col < nCk.length; col++) {
                BigInt replacement = tmp.add(nCk[col]);
                tmp = nCk[col];
                nCk[col] = replacement;
            }
        }

        BigInt central = nCk[0]; // 1^2 = 1
        int lim = (n & 1) == 1 ? nCk.length : (nCk.length - 1);
        for (int k = 1; k < lim; k++) central = central.add(nCk[k].sq());
        central = central.add(central);
        if ((n & 1) == 0) central = central.add(nCk[nCk.length - 1].sq());

        System.out.println(central.digsum());
    }

    private static class BigInt {
        static final int B = 1000000000;
        private int[] val;

        public BigInt(int x) {
            val = new int[] { x };
        }

        private BigInt(int[] val) {
            this.val = val;
        }

        public BigInt add(BigInt that) {
            int[] left, right;
            if (val.length < that.val.length) {
                left = that.val;
                right = val;
            }
            else {
                left = val;
                right = that.val;
            }

            int[] sum = left.clone();
            int carry = 0, k = 0;
            for (; k < right.length; k++) {
                int a = sum[k] + right[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            while (carry > 0 && k < sum.length) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
                k++;
            }
            if (carry > 0) {
                int[] wider = new int[sum.length + 1];
                System.arraycopy(sum, 0, wider, 0, sum.length);
                wider[sum.length] = carry;
                sum = wider;
            }

            return new BigInt(sum);
        }

        public BigInt sq() {
            int[] rv = new int[2 * val.length];
            // Naive multiplication
            for (int i = 0; i < val.length; i++) {
                for (int j = i; j < val.length; j++) {
                    int k = i+j;
                    long c = val[i] * (long)val[j];
                    if (j > i) c <<= 1;
                    while (c > 0) {
                        c += rv[k];
                        rv[k] = (int)(c % B);
                        c /= B;
                        k++;
                    }
                }
            }

            int len = rv.length;
            while (len > 1 && rv[len - 1] == 0) len--;
            if (len < rv.length) {
                int[] rv2 = new int[len];
                System.arraycopy(rv, 0, rv2, 0, len);
                rv = rv2;
            }

            return new BigInt(rv);
        }

        public long digsum() {
            long rv = 0;
            for (int i = 0; i < val.length; i++) {
                int x = val[i];
                while (x > 0) {
                    rv += x % 10;
                    x /= 10;
                }
            }
            return rv;
        }
    }
}

Я отримую 29 500 за вашу програму і 440 000 за довідкову програму, так що це буде оцінка 0,067. Це компілювання з Java 1.7 ( javac CodeGolf37270.java) та виконання з Java 1.8 ( java CodeGolf37270 n). Я не впевнений, чи є варіанти оптимізації, про які я не знаю. Я не можу спробувати компілювати з Java 1.8, тому що він не встановлюється разом із моїм пакетом Java ...
Dennis

Цікавий підхід. Чому, на вашу думку, обчислення його ітераційно може бути швидшим, ніж використання простої формули?
justhalf

@justhalf, у мене не було інтуїції, чи буде це швидше чи ні, і я не намагався робити розрахунки складності. Я переглянув списки тотожностей для центральних біноміальних коефіцієнтів, щоб спробувати знайти формули, які було б просто реалізувати за допомогою спеціального великого цілого класу, оптимізованого для отримання базових 10 цифр. І виявивши, що це не дуже ефективно, я можу також опублікувати його і врятувати когось іншого від повторення експерименту. (FWIW я працюю над множенням Toom, але я не впевнений, коли я його перевіряю і налагоджую).
Пітер Тейлор

2

GMP - 1500000/300000 = 5,0

Хоча ця відповідь не буде конкурувати проти сит, іноді короткий код все одно може отримати результати.

#include <gmpxx.h>
#include <iostream>

mpz_class sum_digits(mpz_class n)
{
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0; str[i]>0; i++)

    result += str[i] - 48;

    return result;
}


mpz_class comb_2(const mpz_class &x)
{
    const unsigned int k = mpz_get_ui(x.get_mpz_t()) / 2;
    mpz_class result = k + 1;

    for(int i=2; i<=k; i++)
    {
        result *= k + i;
        mpz_divexact_ui(result.get_mpz_t(), result.get_mpz_t(), i);
    }

    return result;
}

int main()
{
    const mpz_class n = 1500000;
    std::cout << sum_digits(comb_2(n)) << std::endl;

    return 0;
}

2

Java, спеціальний великий цілий клас: 32,9 (120000000/365000)

Основний клас досить простий:

import java.util.*;

public class PPCG37270 {
    public static void main(String[] args) {
        long start = System.nanoTime();

        int n = 12000000;
        if (args.length == 1) n = Integer.parseInt(args[0]);

        boolean[] sieve = new boolean[n + 1];
        int[] remaining = new int[n + 1];
        int[] count = new int[n + 1];

        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            long p2 = p * (long)p;
            if (p2 > n) continue;
            for (int i = (int)p2; i <= n; i += p) sieve[i] = true;
        }

        for (int i = 2; i <= n; i++) remaining[i] = i;
        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            for (int i = p; i <= n; i += p) {
                while (remaining[i] % p == 0) {
                    remaining[i] /= p;
                    count[p]++;
                    if (i <= n/2) count[p] -= 2;
                }
            }
        }

        count[2] -= count[5];
        count[5] = 0;

        List<BigInt> partialProd = new ArrayList<BigInt>();
        long accum = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = count[i]; j > 0; j--) {
                long tmp = accum * i;
                if (tmp < 1000000000L) accum = tmp;
                else {
                    partialProd.add(new BigInt((int)accum));
                    accum = i;
                }
            }
        }
        partialProd.add(new BigInt((int)accum));
        System.out.println(prod(partialProd).digsum());
        System.out.println((System.nanoTime() - start) / 1000000 + "ms");
    }

    private static BigInt prod(List<BigInt> vals) {
        while (vals.size() > 1) {
            int n = vals.size();
            List<BigInt> next = new ArrayList<BigInt>();
            for (int i = 0; i < n; i += 2) {
                if (i == n - 1) next.add(vals.get(i));
                else next.add(vals.get(i).mul(vals.get(i+1)));
            }
            vals = next;
        }
        return vals.get(0);
    }
}

Він спирається на великий цілий клас, оптимізований для множення, і toString()обидва вони є значними вузькими місцями в реалізації java.math.BigInteger.

/**
 * A big integer class which is optimised for conversion to decimal.
 * For use in simple applications where BigInteger.toString() is a bottleneck.
 */
public class BigInt {
    // The base of the representation.
    private static final int B = 1000000000;
    // The number of decimal digits per digit of the representation.
    private static final int LOG10_B = 9;

    public static final BigInt ZERO = new BigInt(0);
    public static final BigInt ONE = new BigInt(1);

    // We use sign-magnitude representation.
    private final boolean negative;

    // Least significant digit is at val[off]; most significant is at val[off + len - 1]
    // Unless len == 1 we guarantee that val[off + len - 1] is non-zero.
    private final int[] val;
    private final int off;
    private final int len;

    // Toom-style multiplication parameters from
    // Zuras, D. (1994). More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8), 899-908.
    private static final int[][][] Q = new int[][][]{
        {},
        {},
        {{1, -1}},
        {{4, 2, 1}, {1, 1, 1}, {1, 2, 4}},
        {{8, 4, 2, 1}, {-8, 4, -2, 1}, {1, 1, 1, 1}, {1, -2, 4, -8}, {1, 2, 4, 8}}
    };
    private static final int[][][] R = new int[][][]{
        {},
        {},
        {{1, -1, 1}},
        {{-21, 2, -12, 1, -6}, {7, -1, 10, -1, 7}, {-6, 1, -12, 2, -21}},
        {{-180, 6, 2, -80, 1, 3, -180}, {-510, 4, 4, 0, -1, -1, 120}, {1530, -27, -7, 680, -7, -27, 1530}, {120, -1, -1, 0, 4, 4, -510}, {-180, 3, 1, -80, 2, 6, -180}}
    };
    private static final int[][] S = new int[][]{
        {},
        {},
        {1, 1, 1},
        {1, 6, 2, 6, 1},
        {1, 180, 120, 360, 120, 180, 1}
    };

    /**
     * Constructs a big version of an integer value.
     * @param x The value to represent.
     */
    public BigInt(int x) {
        this(Integer.toString(x));
    }

    /**
     * Constructs a big version of a long value.
     * @param x The value to represent.
     */
    public BigInt(long x) {
        this(Long.toString(x));
    }

    /**
     * Parses a decimal representation of an integer.
     * @param str The value to represent.
     */
    public BigInt(String str) {
        this(str.charAt(0) == '-', split(str));
    }

    /**
     * Constructs a sign-magnitude representation taking the entire span of the array as the range of interest.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant first.
     */
    private BigInt(boolean neg, int[] val) {
        this(neg, val, 0, val.length);
    }

    /**
     * Constructs a sign-magnitude representation taking a range of an array as the magnitude.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant at offset off, most significant at off + val - 1.
     * @param off The offset within the array.
     * @param len The number of base-B digits.
     */
    private BigInt(boolean neg, int[] val, int off, int len) {
        // Bounds checks
        if (val == null) throw new IllegalArgumentException("val");
        if (off < 0 || off >= val.length) throw new IllegalArgumentException("off");
        if (len < 1 || off + len > val.length) throw new IllegalArgumentException("len");

        this.negative = neg;
        this.val = val;
        this.off = off;
        // Enforce the invariant that this.len is 1 or val[off + len - 1] is non-zero.
        while (len > 1 && val[off + len - 1] == 0) len--;
        this.len = len;

        // Sanity check
        for (int i = 0; i < len; i++) {
            if (val[off + i] < 0) throw new IllegalArgumentException("val contains negative digits");
        }
    }

    /**
     * Splits a string into base-B digits.
     * @param str The string to parse.
     * @return An array which can be passed to the (boolean, int[]) constructor.
     */
    private static int[] split(String str) {
        if (str.charAt(0) == '-') str = str.substring(1);

        int[] arr = new int[(str.length() + LOG10_B - 1) / LOG10_B];
        int i, off;
        // Each element of arr represents LOG10_B characters except (probably) the last one.
        for (i = 0, off = str.length() - LOG10_B; off > 0; off -= LOG10_B) {
            arr[i++] = Integer.parseInt(str.substring(off, off + LOG10_B));
        }
        arr[i] = Integer.parseInt(str.substring(0, off + LOG10_B));
        return arr;
    }

    public boolean isZero() {
        return len == 1 && val[off] == 0;
    }

    public BigInt negate() {
        return new BigInt(!negative, val, off, len);
    }

    public BigInt add(BigInt that) {
        // If the signs differ, then since we use sign-magnitude representation we want to do a subtraction.
        boolean isSubtraction = negative ^ that.negative;

        BigInt left, right;
        if (len < that.len) {
            left = that;
            right = this;
        }
        else {
            left = this;
            right = that;

            // For addition I just care about the lengths of the arrays.
            // For subtraction I want the largest absolute value on the left.
            if (isSubtraction && len == that.len) {
                int cmp = compareAbsolute(that);
                if (cmp == 0) return ZERO; // Cheap special case
                if (cmp < 0) {
                    left = that;
                    right = this;
                }
            }
        }

        if (right.isZero()) return left;

        BigInt result;
        if (!isSubtraction) {
            int[] sum = new int[left.len + 1];
            // A copy here rather than using left.val in the main loops and copying remaining values
            // at the end gives a small performance boost, probably due to cache locality.
            System.arraycopy(left.val, left.off, sum, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = sum[k] + right.val[right.off + k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            for (; carry > 0 && k < left.len; k++) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            sum[left.len] = carry;

            result = new BigInt(negative, sum);
        }
        else {
            int[] diff = new int[left.len];
            System.arraycopy(left.val, left.off, diff, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = diff[k] - right.val[right.off + k] + carry;
                // Why did anyone ever think that rounding positive and negative divisions differently made sense?
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }
            for (; carry != 0 && k < left.len; k++) {
                int a = diff[k] + carry;
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }

            result = new BigInt(left.negative, diff, 0, k > left.len ? k : left.len);
        }

        return result;
    }

    private int compareAbsolute(BigInt that) {
        if (len > that.len) return 1;
        if (len < that.len) return -1;

        for (int i = len - 1; i >= 0; i--) {
            if (val[off + i] > that.val[that.off + i]) return 1;
            if (val[off + i] < that.val[that.off + i]) return -1;
        }

        return 0;
    }

    public BigInt mul(BigInt that) {
        if (isZero() || that.isZero()) return ZERO;

        if (len == 1) return that.mulSmall(negative ? -val[off] : val[off]);
        if (that.len == 1) return mulSmall(that.negative ? -that.val[that.off] : that.val[that.off]);

        int shorter = len < that.len ? len : that.len;
        BigInt result;
        // Cutoffs have been hand-tuned.
        if (shorter > 300) result = mulToom(3, that);
        else if (shorter > 28) result = mulToom(2, that);
        else result = mulNaive(that);

        return result;
    }

    BigInt mulSmall(int m) {
        if (m == 0) return ZERO;
        if (m == 1) return this;
        if (m == -1) return negate();

        // We want to do the magnitude calculation with a positive multiplicand.
        boolean neg = negative;
        if (m < 0) {
            neg = !neg;
            m = -m;
        }

        int[] pr = new int[len + 1];
        int carry = 0;
        for (int i = 0; i < len; i++) {
            long t = val[off + i] * (long)m + carry;
            pr[i] = (int)(t % B);
            carry = (int)(t / B);
        }
        pr[len] = carry;
        return new BigInt(neg, pr);
    }

    // NB This truncates.
    BigInt divSmall(int d) {
        if (d == 0) throw new ArithmeticException();
        if (d == 1) return this;
        if (d == -1) return negate();

        // We want to do the magnitude calculation with a positive divisor.
        boolean neg = negative;
        if (d < 0) {
            neg = !neg;
            d = -d;
        }

        int[] div = new int[len];
        int rem = 0;
        for (int i = len - 1; i >= 0; i--) {
            long t = val[off + i] + rem * (long)B;
            div[i] = (int)(t / d);
            rem = (int)(t % d);
        }

        return new BigInt(neg, div);
    }

    BigInt mulNaive(BigInt that) {
        int[] rv = new int[len + that.len];
        // Naive multiplication
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < that.len; j++) {
                int k = i + j;
                long c = val[off + i] * (long)that.val[that.off + j];
                while (c > 0) {
                    c += rv[k];
                    rv[k] = (int)(c % B);
                    c /= B;
                    k++;
                }
            }
        }

        return new BigInt(this.negative ^ that.negative, rv);
    }

    private BigInt mulToom(int k, BigInt that) {
        // We split each number into k parts of m base-B digits each.
        // m = ceil(longer / k)
        int m = ((len > that.len ? len : that.len) + k - 1) / k;

        // Perform the splitting and evaluation steps of Toom-Cook.
        BigInt[] f1 = this.toomFwd(k, m);
        BigInt[] f2 = that.toomFwd(k, m);

        // Pointwise multiplication.
        for (int i = 0; i < f1.length; i++) f1[i] = f1[i].mul(f2[i]);

        // Inverse (or interpolation) and recomposition.
        return toomBk(k, m, f1, negative ^ that.negative, val[off], that.val[that.off]);
    }

    // Splits a number into k parts of m base-B digits each and does the polynomial evaluation.
    private BigInt[] toomFwd(int k, int m) {
        // Split.
        BigInt[] a = new BigInt[k];
        for (int i = 0; i < k; i++) {
            int o = i * m;
            if (o >= len) a[i] = ZERO;
            else {
                int l = m;
                if (o + l > len) l = len - o;
                // Ignore signs for now.
                a[i] = new BigInt(false, val, off + o, l);
            }
        }

        // Evaluate
        return transform(Q[k], a);
    }

    private BigInt toomBk(int k, int m, BigInt[] f, boolean neg, int lsd1, int lsd2) {
        // Inverse (or interpolation).
        BigInt[] b = transform(R[k], f);

        // Recomposition: add at suitable offsets, dividing by the normalisation factors
        BigInt prod = ZERO;
        int[] s = S[k];
        for (int i = 0; i < b.length; i++) {
            int[] shifted = new int[i * m + b[i].len];
            System.arraycopy(b[i].val, b[i].off, shifted, i * m, b[i].len);
            prod = prod.add(new BigInt(neg ^ b[i].negative, shifted).divSmall(s[i]));
        }

        // Handle the remainders.
        // In the worst case the absolute value of the sum of the remainders is s.length, so pretty small.
        // It should be easy enough to work out whether to go up or down.
        int lsd = (int)((lsd1 * (long)lsd2) % B);
        int err = lsd - prod.val[prod.off];
        if (err > B / 2) err -= B / 2;
        if (err < -B / 2) err += B / 2;
        return prod.add(new BigInt(err));
    }

    /**
     * Multiplies a matrix of small integers and a vector of big ones.
     * The matrix has a implicit leading row [1 0 ... 0] and an implicit trailing row [0 ... 0 1].
     * @param m The matrix.
     * @param v The vector.
     * @return m v
     */
    private BigInt[] transform(int[][] m, BigInt[] v) {
        BigInt[] b = new BigInt[m.length + 2];
        b[0] = v[0];
        for (int i = 0; i < m.length; i++) {
            BigInt s = ZERO;
            for (int j = 0; j < m[i].length; j++) s = s.add(v[j].mulSmall(m[i][j]));
            b[i + 1] = s;
        }
        b[b.length - 1] = v[v.length - 1];

        return b;
    }

    /**
     * Sums the digits of this integer.
     * @return The sum of the digits of this integer.
     */
    public long digsum() {
        long rv = 0;
        for (int i = 0; i < len; i++) {
            int x = val[off + i];
            while (x > 0) {
                rv += x % 10;
                x /= 10;
            }
        }
        return rv;
    }
}

Велике вузьке вузьке місце - це наївне розмноження (60%), за ним слідує інше множення (37%) та просіювання (3%). digsum()Виклик незначний.

Продуктивність вимірюється OpenJDK 7 (64 біт).


Дуже хороша. Дякую.

1

Python 2 (PyPy), 1,134,000 / 486,000 = 2,32

#/!usr/bin/pypy
n=input(); a, b, c=1, 1, 2**((n+2)/4)
for i in range(n-1, n/2, -2): a*=i
for i in range(2, n/4+1): b*=i
print sum(map(int, str(a*c/b)))

Результат: 1,537,506

Забавний факт: вузьким місцем вашого коду є додавання цифр, не обчислення двочленного коефіцієнта.


Чому python так повільно додає цифри? І ви, і xnor говорите, що це так. Мені це стало цікаво, тому я наклав шахту. Він потрапив менше ніж на секунду за частину суми (Java).
Геобіт

@Geobits Хм, цікаво. Чи також Java здатна здійснювати аналогічні швидкості двійково-десяткових перетворень? Він репрезентує цілі числа у двійковій формі, чи не так?
xnor

Це гарне запитання. Для цілого / Цілого / довгого / Довгого я знаю, що це двійкове. Я не точно впевнений, що таке внутрішнє представництво BigInteger. Якщо це десятковий, це однозначно пояснить, чому це математика повільно, але швидко перетворюється на рядок. Може завтра подивитись на це.
Геобіт

@Geobits, внутрішня репрезентація BigInteger - це база 2.
Пітер Тейлор

Я завжди припускав так, але це змусило мене замислитися. Схоже, це розбиває його на шматки великого розміру і перетворює його таким чином, принаймні, у OpenJDK.
Геобіт

1

Ява (2,020 000/491 000) = 4,11

оновлено, раніше 2,24

Java BigInteger- не найшвидший кронштейн чисел, але краще, ніж нічого.

Основна формула для цього, здається, є n! / ((n/2)!^2), але це здається купою зайвого множення.

Ви можете досягти значного прискорення, усунувши всі прості фактори, що знаходяться як у чисельнику, так і в знаменнику. Для цього я спершу запускаю просте ситове крісло. Тоді за кожним прем'єр-міністром я підраховую, яку силу йому потрібно підняти. Збільшення кожного разу, коли я бачу фактор у чисельнику, декремент для знаменника.

Я поводжусь із двійками окремо (і спочатку), оскільки їх легко порахувати / усунути перед факторингом.

Після цього у вас є мінімальна кількість необхідних множень, що добре, тому що множення BigInt відбувається повільно .

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;

public class CentBiCo {
    public static void main(String[] args) {
        int n = 2020000;
        long time = System.currentTimeMillis();
        sieve(n);
        System.out.println(sumDigits(cbc(n)));
        System.out.println(System.currentTimeMillis()-time);
    }

    static boolean[] sieve;
    static List<Integer> primes;
    static void sieve(int n){
        primes = new ArrayList<Integer>((int)(Math.sqrt(n)));
        sieve = new boolean[n];
        sieve[2]=true;
        for(int i=3;i<sieve.length;i+=2)
            if(i%2==1)
                sieve[i] = true;
        for(int i=3;i<sieve.length;i+=2){
            if(!sieve[i])
                continue;
            for(int j=i*2;j<sieve.length;j+=i)
                sieve[j] = false;
        }
        for(int i=2;i<sieve.length;i++)
            if(sieve[i])
                primes.add(i);
    }

    static int[] factors;
    static void addFactors(int n, int flip){
        for(int k=0;primes.get(k)<=n;){
            int i = primes.get(k);
            if(n%i==0){
                factors[i] += flip;
                n /= i;
            } else {
                if(++k == primes.size())
                    break;
            }
        }
        factors[n]++;
    }

    static BigInteger cbc(int n){
        factors = new int[n+1];
        int x = n/2;
        for(int i=x%2<1?x+1:x+2;i<n;i+=2)
            addFactors(i,1);
        factors[2] = x;
        for(int i=1;i<=x/2;i++){
            int j=i;
            while(j%2<1 && factors[2] > 1){
                j=j/2;
                factors[2]--;
            }
            addFactors(j,-1);
            factors[2]--;
        }
        BigInteger cbc = BigInteger.ONE;
        for(int i=3;i<factors.length;i++){
            if(factors[i]>0)
                cbc = cbc.multiply(BigInteger.valueOf(i).pow(factors[i]));
        }
        return cbc.shiftLeft(factors[2]);
    }

    static long sumDigits(BigInteger in){
        long sum = 0;
        String str = in.toString();
        for(int i=0;i<str.length();i++)
            sum += str.charAt(i)-'0';
        return sum;
    }
}

О, а сума виводу для n = 2020000 - 2735298для цілей перевірки.

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.