Визначальна задача оптимізації


13

Розглянемо 30 на 30 матриць Toeplitz, всі записи яких дорівнюють 0 або 1. Цей виклик є простим завданням оптимізації, щоб знайти матрицю з найбільшою можливою визначницею.

Введення немає

Виведіть матрицю Toeplitz 30 на 30, всі записи якої становлять 0 або 1 разом з її визначником.

Оцінка Визначник матриці, яку ви виводите. Якщо двоє людей отримують однаковий бал, перша відповідь виграє.

Поки що провідні записи

  • 65.455.857.159.975 в Matlab Ніка Alger (приблизно (10 ^ 13,8)
  • 65,455,857,159,975 в Python від isaacg (приблизно 10 ^ 13,8)
  • 39,994,961,721,988 в Mathematica за 2012рcampion (приблизно 10 ^ 13,6)
  • Флоундерером 39,788,537,400,052 в R (приблизно 10 ^ 13,6)
  • 8,363,855,075,832 в Python від Vioz- (приблизно 10 ^ 12,9)
  • 6,984,314,690,903 у Джулії від Алекса А. (приблизно 10 ^ 12,8)

Досадні додаткові обмеження 16 липня 2015 року

Якщо це взагалі можливо, будь-ласка, використовуйте арифметику довільної або високої точності для обчислення кінцевого визначального виходу, щоб ми могли бути впевнені, що це насправді (воно завжди повинно бути цілим числом). У python це повинно бути корисним.


Я здивований, що ця проблема ще не вирішена. Чи відома відповідь матриць циркуляції?
xnor

1
@NickAlger Якщо бібліотека є загальнодоступною для всіх, ви можете нею користуватися.
orlp

2
@immibis На жаль, їх існує 2 ^ 59.

1
Цікаво, що двома незалежними методами було досягнуто матриці Toeplitz з точно визначальним матрицею матриці циркуляційної рідини. У мене немає ніякої математичної інтуїції, чому це - детермінант, звичайний, просто для двійкових матриць Топліца?
lirtosiast

1
@ Min_25 Я повинен мати максимум до 19 завтра. Ви отримаєте код / ​​значення для вас у відповідному питанні, Лембік. За допомогою евристичних алгоритмів я доклав до тих самих значень для n = 30, що й інші два плакати. Кілька разів, з участю рандомізації. Також із циркуляційними матрицями як результат кожного разу, коли я досягаю цього максимуму, навіть якщо мій пошук не обмежується циркуляційними матрицями. До речі, ще один дивовижний (для мене) факт: Максимум для n = 15 - це рівно 2 ^ 17.
Рето Коради

Відповіді:


11

Матлаб, 65,455,857,159,975 (10 ^ 13,8159)

Метод - градієнтне сходження у внутрішній частині куба [0,1] ^ 59, з безліччю випадкових початкових здогадок та округленням в кінці, щоб зробити все нулями та одиницями.

Матриця:

0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0
0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1
1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1
1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1
1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0
0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1
1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1
1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1
1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0
0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1
1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0
0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0
0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0
0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1
1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0
0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0
0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1
1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0
0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1
1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1
1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0
0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1
1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0
0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0
0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0
0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0
0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1
1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1
1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1
1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0

Код:

% Toeplitz 0-1 determinant optimization

n = 30;
m = n + n-1;

toeplitz_map = @(w) toeplitz(w(n:-1:1), w(n:end));

objective = @(w) det(toeplitz_map(w));

detgrad = @(A) det(A)*inv(A)';

toeplitz_map_matrix = zeros(n^2,m);
for k=1:m
    ek = zeros(m,1);
    ek(k) = 1;
    M = toeplitz_map(ek);
    toeplitz_map_matrix(:,k) = M(:);
end

gradient = @(w) (reshape(detgrad(toeplitz_map(w)),1,n^2)*...
                 toeplitz_map_matrix)';

%check gradient with finite differences
w = randn(m,1);
dw = randn(m,1);
s = 1e-6;
g_diff = (objective(w+s*dw) - objective(w))/s;
g = gradient(w)'*dw;
grad_err = (g - g_diff)/g_diff

warning('off')
disp('multiple gradient ascent:')
w_best = zeros(m,1);
f_best = 0;
for trial=1:100000
    w0 = rand(m,1);
    w = w0;
    alpha0 = 1e-5; %step size
    for k=1:20
        f = objective(w);
        g = gradient(w);
        alpha = alpha0;
        for hh=1:100
            w2 = w + alpha*g;
            f2 = objective(w2);
            if f2 > f
                w = w2;
                break;
            else
                alpha = alpha/2;
            end
        end

        buffer = 1e-4;
        for jj=1:m
            if (w(jj) > 1)
                w(jj) = 1 - buffer;
            elseif (w(jj) < 0)
                w(jj) = 0 + buffer;
            end
        end
    end

    w = round(w);
    f = objective(w);
    if f > f_best
        w_best = w;
        f_best = f;
    end
    disp(trial)
    disp(f_best)
    disp(f)
end

M = toeplitz_map(w_best);

Математика за обчисленням градієнта:

У внутрішньоелементному творі (тобто внутрішній продукт Гільберта-Шмідта) градієнт детермінант має репрезентанта Riesz G, заданий

G = det (A) A ^ (- *).

Карта J, від оптимізаційних змінних (діагональних значень) до матриць топліць є лінійною, тому загальний градієнт g є складом цих двох лінійних карт,

g = (vec (G) * J) ',

де vec () - оператор векторизації, який бере матрицю і розгортає її у вектор.

Внутрішній градієнтний підйом:

Після цього все, що вам потрібно зробити, це вибрати початковий вектор діагональних значень w_0, а для деяких невеликих розмірів кроків альфа-ітерація:

  1. w_proposed = w_k + alpha * g_k

  2. щоб отримати w_ (k + 1), візьміть w_proposed та усікайте значення поза [0,1] до 0 або 1

  3. повторити, поки не задоволено, потім округніть все до 0 або 1.

Цей результат досяг мого результату після того, як я провів приблизно 80 000 випробувань з рівномірними випадковими початковими здогадами.


Дане вами посилання OEIS стосувалося матриць циркуляції, які є особливим випадком матриць Topelitz. Так що краще все-таки можливо.
isaacg

@isaacg І також надзвичайно ймовірно!

Так, звичайно, я з цим помилився. Я відредагував свою публікацію, щоб виправити її.
Нік Алгер

1
Так, він дійшов до цього значення при ітерації 250 і залишився там на 100000 ітерацій. Вектор, що визначає 18x18 матриці топеліту з визначником 2994003, був [0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,0, 0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0], де замовлення йде знизу вліво вгору праворуч.
Нік Алгер

2
Я присудив вам перемогу, коли ви придумали нову ідею і придумали перший номер IIRC. О, і це показує, чому ваша відповідь працює math.stackexchange.com/questions/1364471/… .

11

Python 2 з Numpy, 65,455,857,159,975 ~ = 10 ^ 13,8

Це сходження на пагорби, настільки ж прямолінійне. Кінцевий визначальний розрахунок, виконаний за допомогою SymPy, щоб забезпечити точний результат. Усі матриці, знайдені з цим визначником, є циркуляційними.

Матриці, знайдені з цим визначником, задані як значення діагоналі знизу зліва вгору праворуч:

01000100101101000011100111011101000100101101000011100111011
01011101110011100001011010010001011101110011100001011010010
01100001000111011101001110100101100001000111011101001110100
01110100111010010110000100011101110100111010010110000100011
01011101110001000011010010111001011101110001000011010010111
01000101100010110100111101110001000101100010110100111101110
01000100101101000011100111011101000100101101000011100111011

Перший, як матриця:

[[1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1]
 [1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1]
 [1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0]
 [0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1]
 [1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1]
 [1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1]
 [1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0]
 [0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0]
 [0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1]
 [1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1]
 [1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1]
 [1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0]
 [0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0]
 [0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0]
 [0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0]
 [0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1]
 [1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0]
 [0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1]
 [1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1]
 [1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0]
 [0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1]
 [1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0]
 [0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0]
 [0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1]
 [1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0]
 [0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0]
 [0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0]
 [0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1]
 [1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0]
 [0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1]]

Код:

import numpy as np
import sympy as sp
import random
import time
SIZE = 30

random.seed(0)

def gen_diag():
    return [random.randint(0, 1) for i in range(SIZE*2 - 1)]

def diag_to_mat(diag):
    return [diag[a:a+SIZE] for a in range(SIZE-1, -1, -1)]

def diag_to_det(diag):
    matrix = diag_to_mat(diag)
    return np.linalg.det(matrix)

def improve(diag):
    old_diag = diag
    really_old_diag = []
    while really_old_diag != old_diag:
        really_old_diag = old_diag
        for flip_at in range(SIZE * 2 - 1):
            new_diag = old_diag[:]
            new_diag[flip_at] ^= 1
            old_diag = max(old_diag, new_diag, key=diag_to_det)
    return old_diag

overall_best_score = 0
time.clock()
while time.clock() < 500:
    best = improve(gen_diag())
    best_score = diag_to_det(best)
    if best_score > overall_best_score:
        overall_best_score = best_score
        overall_best = best
        print(time.clock(), sp.Matrix(diag_to_mat(overall_best)).det(), ''.join(map(str,overall_best)))


mat = diag_to_mat(overall_best)

sym_mat = sp.Matrix(mat)

print(overall_best)
print(sym_mat.det())

1
Це горіхи. Хороша робота.
Алекс А.

.227 викликає занепокоєння. Як ви вважаєте, чи є спосіб бути впевненим у тому, що насправді є визначальним фактором?

Здається, що stackoverflow.com/questions/6876377/… може допомогти оцінити кінцевий детермінант?

@Lembik Спасибі - SymPy зробив свою справу.
isaacg

Це справді чудово!

10

R, 39 788 537 400 052

Ось моя спроба зробити генетичний алгоритм, але тільки з безстатевим розмноженням. Я сподіваюся, що я правильно зрозумів виклик. Редагувати: прискорити її трохи, спробував інше випадкове насіння та обмежився на 100 поколінь.

    options(scipen=999)

toeplitz <- function(x){
# make toeplitz matrix with first row
# x[1:a] and first col x[(a+1):n]
# where n is the length of x and a= n/2
# Requires x to have even length
#
# [1,1] entry is x[a+1]

N <- length(x)/2
out <- matrix(0, N, N)
out[1,] <- x[1:N]
out[,1] <- x[(N+1):length(x)]
for (i in 2:N){
  for (j in 2:N){
    out[i,j] <- out[i-1, j-1]
  }
} 

out
}

set.seed(1002)

generations <- 100
popsize <- 25
cols <- 60
population <- matrix(sample(0:1, cols*popsize, replace=T), nc=cols)
numfresh <- 5 # number of totally random choices added to population

for (i in 1:generations){

fitness <- apply(population, 1, function(x) det(toeplitz(x)) )
mother <- which(fitness==max(fitness))[1]

population <- matrix(rep(population[mother,], popsize), nc=cols, byrow=T)
for (i in 2:(popsize-numfresh)){
  x <- sample(cols, 1)
  population[i,x] <- 1-population[i,x]
}
for (i in (popsize-numfresh +1):popsize){
  population[i,] <- sample(0:1, cols, replace=T)
}


print(population[1,])
print(fitness[mother])
print(det(toeplitz(population[1,]))) # to check correct

}

Вихід:

print(population[1, 1:(cols/2)]) # first row
print(population[1, (cols/2+1):(cols)]) # first column (overwrites 1st row)

to <- toeplitz(population[1,])

for (i in 1:(cols/2)) cat(to[i,], "\n")

1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 
0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 
1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 
0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 
0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 
0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 
1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 
1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 
1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 
0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 
1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 
1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 
1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 
0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 
0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 
0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 
0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 
1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 
0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 
1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 
0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 
1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 
1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 

Це дуже приємно. Зараз ви перемагаєте довгим шляхом.

Більше не :)

3

Джулія, 6 984 314 690 902,998

Це просто побудує 1 000 000 випадкових матриць Toeplitz і перевіряє їх детермінанти, записуючи максимум зустрічаються. Сподіваємось, хтось придумає елегантне аналітичне рішення, але тим часом ...

function toeplitz(a, b)
    n = length(a)
    T = Array(Int, n, n)
    T[1,:] = b
    T[:,1] = a
    for i = 2:n
        T[i,2:n] = T[i-1,1:n-1]
    end
    T
end

d = 0
A = Any[]

for i = 1:1000000
    # Construct two random 0,1 arrays
    r1 = rand(0:1, 30)
    r2 = rand(0:1, 30)

    # Compute the determinant of a toeplitz matrix constructed
    # from the two random arrays
    D = det(toeplitz(r1, r2))

    # If the computed determinant is larger than anything we've
    # encountered so far, add it to A so we can access it later
    D > d && begin
        push!(A, (D, r1, r2))
        d = D
    end
end

M,N = findmax([i[1] for i in A])

println("Maximum determinant: ", M, "\n")
println(toeplitz(A[N][2], A[N][3]))

Ви можете переглянути результат тут .


Цікаво, наскільки точним є детермінантний розрахунок. Я вважаю, що обчислення, що лежать в основі, проводяться в подвійній точності? Оскільки цифри після десяткової крапки становлять 0,98, мабуть, є хороший шанс, що найближче ціле число все-таки є правильним визначником. Як правило, ви почнете отримувати питання точності з плаваючою точкою, застосовуючи розрахунок детермінант загального призначення, наприклад, заснований на стандартному розкладі LR, до цих матриць, як тільки вони отримають досить великі розміри.
Рето Коради

@RetoKoradi Схоже, він використовує розклад LU, щоб отримати детермінант.
Олексій А.

3

Математика, 39,994,961,721,988 (10 ^ 13,60)

Простий імітаційний метод оптимізації відпалу; ще немає оптимізації чи налаштування.

n = 30;
current = -\[Infinity];
best = -\[Infinity];
saved = ConstantArray[0, {2 n - 1}];
m := Array[a[[n + #1 - #2]] &, {n, n}];
improved = True;
iters = 1000;
pmax = 0.1;
AbsoluteTiming[
 While[improved || RandomReal[] < pmax,
   improved = False;
   a = saved;
   Do[
    Do[
      a[[i]] = 1 - a[[i]];
      With[{d = Det[m]},
       If[d > best,
          best = d;
          current = d;
          saved = a;
          improved = True;
          Break[];,
          If[d > current || RandomReal[] < pmax (1 - p/iters),
           current = d;
           Break[];,
           a[[i]] = 1 - a[[i]];
           ]
          ];
        ;
       ],
      {i, 2 n - 1}];,
    {p, iters}];
   ];
 ]
best
Log10[best // N]
a = saved;
m // MatrixForm

Вибірка зразка:

{20.714876,Null}
39994961721988
13.602
(1  1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0
0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0
0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0
0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0
0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1
1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0
0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0
0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0
0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0
0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1
1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1
1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0
0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1
1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1
1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0
0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1
1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1
1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1
1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0
0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1
1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1
1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0
0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0
0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0
0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0
0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1
1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0
0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1
1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1
1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1

)

1

Пітон 2, 8 363 855 075 832

Ця стратегія має дуже основну, майже неіснуючу.

from scipy import linalg

start = 2**28
mdet  = 0
mmat  = []
count = 0
powr  = 1
while 1:
 count += 1
 v = map(int,bin(start)[2:].zfill(59))
 m = [v[29:]]
 for i in xrange(1,30):
     m += [v[29-i:59-i]]
 d = 0
 try: d = linalg.det(m, check_finite=False)
 except: print start
 if d > mdet:
     print d
     print m
     mdet = d
     mmat = m
     start += 1
     powr = 1
 else:
     start += 2**powr
     powr += 1
     if start>(2**59-1):
         start-=2**59-1
         powr = 1
 if count%10000==0: print 'Tried',count

Ось найкраща матриця, яку вона знайшла після ~ 5,580 000 спроб:

1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1
1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1
1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1
1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0
0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1
1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1
1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0
1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1
1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1
0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1

Все ще працює ...

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.