Функціонал , неконкурентний, 29199 байт
Мені сподобалося це завдання, тому що воно підкреслило біль у відсутності деяких дуже корисних функцій бібліотеки. Я включу всі ці функції сюди (і в число байтів), тому що я написав їх після публікації цього виклику.
Повне джерело в одному файлі
Пояснення
Як завжди, покращуйте візуалізацію, виконавши javascript:(function(){$('pre,code').css({lineHeight:5/4});})()
на консолі браузера.
① ɹ
⇄
Реверс
Як ви можете, чи не знаєте, Funciton постачається з бібліотекою, повною функцій для списків , які є значеннями, закодованими в одне гумористичне ціле число, а також окремою бібліотекою для послідовних оцінок послідовностей , які використовують лямбда-вирази (анонімні функції) в щоб бути лінивим. Звичайно, є також бібліотека для функцій обробки рядків.
Для цього завдання мені потрібна була функція для зворотного перетворення рядка та функція для зворотної зміни послідовності, оціненої лінивою. Дивно, але я мав лише один для списків - саме той, який мені не потрібен. Отже ось зворотні функції для ледачих послідовностей ( ɹ
) та для рядків ( ⇄
):
╓───╖ ╔════╗ ┌────╖ ╓───╖
║ ɹ ║ ║ 21 ╟─┤ >> ╟──┐ ║ ⇄ ║
╙─┬─╜ ╚════╝ ╘═╤══╝ │ ╙─┬─╜ ┌──┐
┌─────┴─────┐ ┌─┴─╖ ├───────┴────────┤ │
┌─┴─╖ ┌───╖ │ │ ⇄ ║ │ ╔════╗ ┌───╖ │ │
┌─┤ ╟─┤ ɹ ╟─┐ │ ╘═╤═╝ │ ║ −1 ╟─┤ ≠ ╟─┴┐ │
│ └─┬─╜ ╘═══╝ │ │ ┌─┴─╖ ┌─┴─╖ ╚════╝ ╘═╤═╝ │ │
│ │ ┌───╖ │ │ │ ‼ ╟─┤ ? ╟──────────┤ │ │
│ └───┤ ʬ ╟─┘ │ ╘═╤═╝ ╘═╤═╝ ╔═══╗ ┌─┴─╖ │ │
│ ╘═╤═╝ │ ┌─┴─╖ ╔═══╗ ║ 0 ╟─┤ ≠ ╟──┘ │
│ ╔═══╗ ┌─┴─╖ │ ┌─┤ ʃ ╟─╢ 1 ║ ╚═╤═╝ ╘═══╝ │
└─╢ 0 ╟─┤ ? ╟───┘ │ ╘═╤═╝ ╚═══╝ │ │
╚═══╝ ╘═╤═╝ │ └────────────┘ │
│ └─────────────────────────────┘
Використовується послідовність лінивих послідовностей ʬ
, яка "додає елемент до кінця лінивої послідовності". Рядок використовується один ʃ
(підряд) та ‼
(рядок об'єднати).
② Ṗ
Прайми
Хоча я міг би зробити просту факторизацію, просто намагаючись розділити n на всі чинники, щоб вирішити, що хочу функціонувати бібліотеку, яка генерує прості числа. Наступна функція займає ціле число n та реалізує сито Ератосфена для генерації всіх простих чисел до n . Це робиться як лінива послідовність, тому він генерує лише стільки простих ліній, скільки ви насправді оцінюєте.
╓───╖
║ Ṗ ║
╔═══╗ ╙─┬─╜
║ 0 ║ ┌─┴─╖
╚═╤═╝ │ ♭ ║
╔═══╗ ┌──┴─╖ ╘═╤═╝
║ 2 ╟─┤ Ṗp ╟───┘
╚═══╝ ╘══╤═╝
┌──────────────┐ │
│ ├─────────────────────────────────────────┐
│ ┌─┴─╖ │
│ ┌─┤ · ╟────────────────────────────┐ ╓┬───╖ │
│ │ ╘═╤═╝ ├───╫┘Ṗp ╟─┤
│ │ │ ╔═══╗ ┌────╖ ┌─┴─╖ ╙─┬──╜ │
│ │ │ ║ 1 ╟─┤ >> ╟─────┤ · ╟───┴─┐ │
│ │ │ ┌───╖ ╚═══╝ ╘══╤═╝ ╘═╤═╝ │ │
│ │ ┌─┴──┤ ♯ ╟─────┐ ┌──┴─╖ ┌───╖ │ │ │
│ │ │ ╘═══╝ ┌─┐ │ ┌──┤ Ṗp ╟─┤ ♭ ╟─┴─┐ │ │
│ │ │ ├─┘ └─┤ ╘══╤═╝ ╘═══╝ ┌─┘ │ │
│ │ │ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ │ │
│ │ └────────╢ ├─┤ · ╟─┤ ? ╟─────┤ · ╟─┐ │ │
│ │ ┌───╖ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │ │ │
│ ┌─┴─┤ ♭ ╟─┐ ┌──┴─╖ │ ┌─┴─╖ │ │ │ │
│ │ ╘═══╝ └─┤ Ṗp ╟───┘ ┌─┤ ? ╟───────┘ │ │ │
│ ┌───╖ │ ╔════╗ ╘══╤═╝ │ ╘═╤═╝ │ │ │
┌─┴─┤ ÷ ╟──┘ ║ −1 ║ ┌──┴─╖ ╔═╧═╗ │ ┌┴┐ │ │
│ ╘═╤═╝ ╚══╤═╝ ┌─┤ >> ╟─┐ ║ 0 ║ └┬┘ │ │
│ ┌─┴─╖ ┌────╖ │ │ ╘════╝ │ ╚═══╝ │ │ │
│ │ × ╟─┤ << ╟─┘ ┌─┴─┐ ╔═╧═╗ │ │ │
│ ╘═╤═╝ ╘══╤═╝ ┌┴┐ ┌┴┐ ║ 1 ╟───────────────────┴─┐ │ │
└─────┘ ┌┴┐ └┬┘ └┬┘ ╚═══╝ ├─┘ │
└┬┘ │ └──────────────────────────────┘ │
┌─┴─╖ ┌─┴──╖ │
│ ÷ ╟─┤ << ╟─┐ │
╘═╤═╝ ╘════╝ ├──────────────────────────────────┘
┌┴┐ │
└┬┘ │
╔════╗ ┌─┴──╖ │
║ −1 ╟─┤ << ╟───────┘
╚════╝ ╘════╝
Помічна функція Ṗp
, займає:
Запуск лічильника, який просто продовжує зменшуватися, поки не досягне 0.
Сито, у якому встановлено трохи для кожного числа, яке, як відомо, не є простим. Спочатку найменш значущий біт представляє число 2, але ми зміщуємо це право з кожною ітерацією.
Число n, яке вказує, яке число представлено найнижчим бітом сита; це збільшується з кожною ітерацією.
При кожній ітерації, якщо найнижчий біт сита дорівнює 0, ми знайшли просте n . Потім ми використовуємо формулу, яку я вже описав у Заповнення рядків, стовпців та діагоналей сітки NxN, щоб встановити кожен n -й біт в решеті, перш ніж переходити до наступної ітерації.
Основна Ḟ
факторизація
╓───╖
║ Ḟ ║
╙─┬─╜
┌───────┴──────┐
│ ┌───╖ ┌────╖ │
└─┤ Ṗ ╟─┤ Ḟp ╟─┘
╘═══╝ ╘═╤══╝
│
┌────────────────────────────────────────────┐
│ ╓┬───╖ │
┌───────┴─┐ ┌───────────────────────┐ ┌─╫┘Ḟp ╟─┘
│ ╔═══╗ ┌─┴─╖ ┌─┴─╖ ┌───┐ ┌────╖ ┌─┴─╖ │ ╙────╜
│ ║ 0 ╟─┤ ╟─┤ · ╟─┘┌┐ └─┤ Ḟp ╟──┐ ┌─┤ · ╟─┴──┐
│ ╚═══╝ └─┬─╜ ╘═╤═╝ └┤ ╘═╤══╝ ├─┘ ╘═╤═╝ │
│ ┌─┴─┐ ┌─┴─╖ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴──╖ ┌─┴─╖
│ │ └─┤ · ╟─╢ ├─┤ ? ╟─┤ · ╟─┤ ÷% ╟─┤ · ╟─┐
│ │ ╘═╤═╝ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤══╝ ╘═╤═╝ │
│ │ ┌──┴─╖ │ ┌─┴─╖ ┌─┴─╖ └──────┘ │
│ │ │ Ḟp ╟───┘ ┌─┤ ? ╟─┤ ≤ ║ │
│ ┌─┴─╖ ╘══╤═╝ │ ╘═╤═╝ ╘═╤═╝ │
└─────┤ · ╟─────┘ ╔═╧═╗ │ ╔═╧═╗ │
╘═╤═╝ ║ 0 ║ ║ 2 ║ │
│ ╚═══╝ ╚═══╝ │
└──────────────────────────────────────────┘
Це досить прямо. Просто перейдіть через праймери до n і подивіться, на які ділять n . Якщо ділити n , не забудьте продовжити з тим самим простим простором, щоб ми повернули його кілька разів, якщо він ділить n багаторазово. Це повертає порожню послідовність для будь-якого числа менше 2.
④ ◇
◆
Створіть алмаз
Ця функція генерує єдиний алмаз із заданим символом та радіусом. Він використовує лише символ, щоб розмістити його в центрі ромба.
┌───╖
┌─────────────────────┤ ♯ ╟───────────┬─────────┐
│ ┌───╖ ╔═══╗ ┌───┐ ╘═══╝ │ │
└─┤ ♫ ╟─╢ 0 ║ │ ┌─┴─╖ │ │
╘═╤═╝ ╚═══╝ │ │ ʭ ╟───┐ │ │
┌─┴─╖ ┌─────┘ ╘═╤═╝ │ │ │
│ ɱ ╟───┤ ┌───╖ ┌─┴─╖ ╔═══╗ ╓───╖ │ │
╘═╤═╝ └─┤ ɹ ╟─┤ ʓ ╟─╢ 1 ║ ┌─╢ ◇ ╟─┤ │
│ ╔═══╗ ╘═══╝ ╘═══╝ ╚═══╝ │ ╙───╜ │ │
│ ║ 0 ║ │ ┌─┴─╖ │
│ ╚═╤═╝ │ │ ♭ ║ │
╔═╧═╕ │ ╔════╗ │ ╘═╤═╝ │
┌───╢ ├─┘ ┌─╢ 21 ║ ┌─┴─╖ ┌─┴─╖ ┌─┴─┐
│ ╚═╤═╛ │ ╚════╝ ┌────────┤ · ╟───┤ · ╟─┐ ┌─┴─╖ │
│ ┌─┴─╖ ┌─┴──╖ ┌───┘ ╘═╤═╝ ╘═╤═╝ ├─┤ = ║ │
│ ┌─┤ ‼ ╟─┤ >> ║ │ │ ┌─┴─╖ │ ╘═╤═╝ │
│ │ ╘═══╝ ╘═╤══╝ │ │ ┌─┤ ? ╟─┘ │ │
│ │ ┌───╖ │ ┌──┘ │ │ ╘═╤═╝ │ │
│ └─┬─┤ ⇄ ╟─┘ │ ┌─────┐ │ │ ┌─┴─╖ │ │
│ │ ╘═══╝ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ └─┤ · ╟──┬──┘ │
│ └───────┤ · ╟─┤ ? ╟─┤ · ╟─┤ ‼ ║ ╘═╤═╝ │ │
│ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ │ │
│ └─────┘ └─┬───┘ ┌───┤ … ║ │ │
│ ┌─────┐ │ │ ╘═╤═╝ │ │
│ ╔══╧═╗ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╔═╧══╗ │ │
│ ║ 32 ║ │ … ╟─┤ ‼ ╟─┤ ‼ ║ ║ 32 ║ │ │
│ ╚════╝ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╚════╝ │ │
│ ┌─┴─╖ ╔═╧══╗ │ │
│ ┌───┤ − ╟───┬─┐ ║ 46 ║ │ │
│ ┌─┴─╖ ╘═══╝ │ │ ╚════╝ │ │
└─────────────┤ · ╟─────────┘ └──────────────┘ │
╘═╤═╝ │
└───────────────────────────────────┘
Це робить сильне використання лінивих послідовностей. Ось як це працює:
Створіть послідовність цілих чисел від 0 до r (включно).
Для кожного такого цілого числа α генеруйте рядок, що складається з ( r - α ) пробілів ( …
), а потім крапки, а потім пробілів α - за винятком випадків, коли α = r ; Тепер ми маємо верхню ліву чверть алмазу.
До кожного з цих рядків додайте ще одну копію цього ж рядка, але з символами, перевернутими ( ⇄
), а потім перший символ видалено ( >> 21
). Тепер ми маємо верхню половину алмазу.
Візьміть цю послідовність і додайте до неї ту саму послідовність, але перевернуту ( ɹ
) і з вилученим першим елементом ( ʓ
). Зараз у нас є весь алмаз.
Зараз у нас є струни, які складають алмаз, але нам потрібно трохи більше інформації. Нам потрібно знати, де знаходиться вертикальна середина ромба. Спочатку це звичайно r , але після того, як ми додали інші алмази до верху і внизу цього, нам потрібно буде відслідковувати положення «середнього» алмазу, щоб ми могли вертикально вирівняти інші пачки алмазів правильно. . Те ж саме стосується горизонтального розміру алмазу (потрібно, щоб прикріпити алмази вгорі і внизу). Я також вирішив слідкувати за листом; Мені це потрібно, тому що в іншому випадку функція ⬗
(до якої ми потрапимо в наступному розділі) повинна мати чотири параметри, але Funciton дозволяє лише три.
┌─────────────────┐
│ ╓───╖ │
├──╢ ◆ ╟──┐ │
│ ╙───╜ │ │
│ ┌─────┴───┐ │
┌─┴─╖ │ ┌───╖ ┌─┴─╖ │
┌─┤ · ╟─┴─┤ › ╟─┤ › ║ │
│ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │
│ ┌─┴─╖ │ ┌─┴─╖ │
│ │ ◇ ╟─────────┤ › ╟─┘
│ ╘═╤═╝ ╘═══╝
└───┘
Ми використовуємо API списку ( ›
додає елементи на передню частину списку) для створення структури, що містить [ x , y , c , q ], де x - координата x горизонтального центру ромба, y - y- координата базової лінії, c - літера, q - лінива послідовність рядків. Ця структура буде використовуватися для того, щоб містити всі проміжні етапи відтепер.
⑤ ⬗
Додайте ромби вертикально
Ця функція приймає наявний алмазний стек, радіус і булеве значення, що вказує, чи потрібно додати новий алмаз до верху (справжній) або знизу (помилковий).
┌─────────────────────────────────────────────────┐
┌─┴─╖ ┌───────────────────────────┐ ┌───╖ ┌─┴─╖
┌───┤ · ╟─────────┘ ╔═══╗ ┌───────────────┐ ├─┤ ‹ ╟─┤ ‹ ║
│ ╘═╤═╝ ║ 1 ║ │ ╓───╖ │ │ ╘═╤═╝ ╘═╤═╝
│ │ ╚═╤═╝ └─╢ ⬗ ╟─┐ │ ┌─┴─╖ │ ┌─┴─╖
│ │ ┌───╖ ┌───╖ ┌─┴──╖ ╙─┬─╜ │ └─┤ · ╟─┘ ┌─┤ ‹ ╟─┐
│ ┌─┴─┤ + ╟─┤ ♯ ╟─┤ << ║ │ │ ╘═╤═╝ │ ╘═══╝ │
│ │ ╘═╤═╝ ╘═══╝ ╘═╤══╝ │ ┌─┴─╖ │ │ │
│ │ ┌─┴─╖ └───────┴─┤ · ╟───┐ ┌─┴─╖ │ │
│ └───┤ ? ╟─┐ ╘═╤═╝ ┌─┴───┤ · ╟─┐ │ │
│ ╘═╤═╝ ├───────────────────┘ │ ╘═╤═╝ │ │ │
│ ┌───╖ ┌─┴─╖ │ ┌─────┐ │ ┌───╖ │ │ │ │
└─┤ › ╟─┤ › ║ │ ┌───╖ ┌─┴─╖ │ └─┤ − ╟─┘ │ │ │
╘═╤═╝ ╘═╤═╝ │ ┌─┤ ‼ ╟─┤ ‼ ║ │ ╘═╤═╝ │ │ │
│ ┌─┴─╖ │ │ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ ┌─┴─╖ │ │ │
┌───┤ · ╟─┘ │ ┌─┴─╖ ├───┤ · ╟─┤ … ║ │ │ │
┌───┐ │ ╘═╤═╝ └─┤ · ╟───┘ ╘═╤═╝ ╘═╤═╝ │ │ │
│ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╘═╤═╝ │ ╔══╧═╗ │ │ │
│ │ ʭ ╟─┤ ? ╟─┤ › ╟─┐ ╔═══╗ ╔═╧═╕ │ ║ 32 ║ │ │ │
│ ╘═╤═╝ ╘═╤═╝ ╘═══╝ │ ║ 0 ╟─╢ ├─────────┘ ╚════╝ │ │ │
│ ┌─┘ ┌─┴─╖ │ ╚═══╝ ╚═╤═╛ │ │ │
│ └─┬───┤ ʭ ╟─┐ ┌─┴─╖ ┌─┴─╖ │ │ │
│ ┌─┴─╖ ╘═══╝ ├───┤ · ╟─────┤ ɱ ║ │ │ │
└─┤ · ╟───────┘ ╘═╤═╝ ╘═╤═╝ │ │ │
╘═╤═╝ │ ┌─┴─╖ │ │ │
│ └─────┬─┤ ◇ ╟───────────────────────┘ │ │
│ │ ╘═══╝ ┌─┴─╖ │
│ └─────────────────────────────┤ · ╟─────┘
│ ╘═╤═╝
└─────────────────────────────────────────────────────┘
Це також досить прямо; використовувати ‹
для розпакування структури; використовувати ◇
для створення нового алмазу; використовувати ɱ
(карту), щоб додати пробіли до початку та кінця кожної струни у новому діаманті, щоб усі вони мали однакову ширину; додавання ( ʭ
) нових рядків до старого (якщо знизу) або старого до нового (якщо зверху); і нарешті використовувати ›
для побудови структури, що містить усі нові значення. Зокрема, якщо ми додаємо до низу, y не змінюється, але якщо ми додаємо до вершини, y повинно збільшуватися на ♯(r << 1)
( r - радіус нового алмазу).
⑥ ❖
Об'єднайте стеки горизонтально
Це найбільша функція їх усіх. Я не заперечую, що це було досить чуйно. Він займає два стеки і з'єднує їх по горизонталі, дотримуючись правильного вертикального вирівнювання.
┌──────────────────────────────────┬───────────────────────┐
│ ┌──────────────────┐ ┌─┴─╖ ┌─┴─╖
│ │ ┌───────────┐ └───────┤ · ╟───┬───────────────┤ · ╟─────────────┐
│ │ ┌─┴─╖ │ ╘═╤═╝ │ ╘═╤═╝ │
│ │ │ ‹ ╟───┐ │ ┌─┴─╖ ┌─┴─╖ │ │
│ │ ╘═╤═╝ ┌─┴─╖ └─────────┤ · ╟─┤ · ╟─────────┐ │ │
│ │ ├─┐ │ ‹ ╟───┐ ╘═╤═╝ ╘═╤═╝ │ │ │
│ │ └─┘ ╘═╤═╝ ┌─┴─╖ ╓───╖ ┌─┴─╖ │ │ │ │
│ │ │ │ ‹ ╟─╢ ❖ ╟─┤ ‹ ║ │ │ │ │
│ │ │ ╘═╤═╝ ╙───╜ ╘═╤═╝ ┌─┴─╖ ┌─┐ │ │ │
│ │ │ │ └───┤ ‹ ║ └─┤ │ │ │
│ │ │ │ ╘═╤═╝ ┌─┴─╖ │ │ │
│ │ │ │ └───┤ ‹ ║ │ │ │
│ │ │ └─────────────────┐ ╘═╤═╝ │ │ │
│ │ │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ │
│ │ │ ┌──────────────┤ · ╟─┤ · ╟─┤ · ╟─┤ · ╟──────┐ │
│ │ └──────┤ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │ │
│ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ │ │ │ │ │
│ ┌─┤ · ╟─────────────┤ · ╟────────────┤ · ╟───┘ │ │ │ │
│ │ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │ │ │ │
│ │ │ │ ┌────╖ │ ┌─┴─╖ │ │ │
╔═══╗ ┌────╖ │ │ │ │ ┌─┤ << ╟─┴─────────┤ · ╟─┐ │ │ │
║ 1 ╟─┤ << ╟────────┘ │ │ │ │ ╘═╤══╝ ╘═╤═╝ │ │ │ │
╚═══╝ ╘═╤══╝ ╔════╗ │ │ ┌─┴─╖ │ ┌─┴─╖ │ │ │ ┌──┴──┐ │
┌─┴─╖ ║ 32 ╟─┐ │ │ ┌─────────────┤ · ╟───┐ │ │ ♯ ║ │ │ │ ┌─┴─╖ ┌─┴─╖ │
│ ♯ ║ ╚════╝ │ │ └─┤ ┌───╖ ╘═╤═╝ │ │ ╘═╤═╝ ┌───╖ ╔════╗ │ │ │ ┌─┤ ? ╟─┤ < ║ │
╘═╤═╝ ┌───╖ │ │ └─┤ − ╟─────────┴─┐ │ │ └───┤ … ╟─╢ 32 ║ │ │ │ │ ╘═╤═╝ ╘═╤═╝ │
└─────┤ … ╟─┘ │ ╘═╤═╝ ┌─┴─╖ │ └───┐ ╘═╤═╝ ╚════╝ │ │ │ │ ┌─┴─╖ ├───┘
╘═╤═╝ │ ┌───╖ ┌─┴─╖ ┌───────┤ · ╟─┴─┐ ╔═╧═╗ ┌─┴─╖ ┌──────┘ │ │ └─┤ · ╟───┘
│ ┌─┴─┤ ʭ ╟─┤ ȶ ║ │ ┌───╖ ╘═╤═╝ │ ║ 1 ║ │ ⁞ ║ │ ┌────────┘ │ ╘═╤═╝
┌─┴─╖ │ ╘═╤═╝ ╘═╤═╝ └─┤ > ╟───┴─┐ │ ╚═══╝ ╘═╤═╝ │ │ ┌──────┘ └────┐
│ ⁞ ║ │ ┌─┴─╖ ┌─┴─╖ ╘═╤═╝ │ ┌─┴─╖ ┌───╖ │ │ │ ┌─┴─╖ ┌───╖ ┌───╖ ┌─┴─╖
╘═╤═╝ └───┤ ? ╟─┤ · ╟─────┴─┐ │ │ − ╟─┤ ȶ ╟─┴─┐ │ │ │ + ╟─┤ ♯ ╟─┤ › ╟─┤ › ║
┌─┴─╖ ╘═╤═╝ ╘═╤═╝ │ │ ╘═╤═╝ ╘═╤═╝ │ │ │ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╘═╤═╝
┌────────────────────┤ · ╟───────┴───┐ └─┐ ┌─┴─╖ └───┘ ┌─┴─╖ │ │ └───┘ │ │
│ ╘═╤═╝ ┌─┴─╖ │ ┌─┤ · ╟───────────┤ · ╟───┘ │ │
│ ┌────────────────┐ │ ┌───────┤ · ╟─┘ │ ╘═╤═╝ ╘═╤═╝ │ │
│ │ ╔════╗ ┌───╖ ┌─┴─╖ └───┤ ┌───╖ ╘═╤═╝ │ │ │ ┌─┴───┐ │
│ │ ║ 32 ╟─┤ ‼ ╟─┤ · ╟───┐ └─┤ ʭ ╟───┘ │ │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ │
│ │ ╚════╝ ╘═╤═╝ ╘═╤═╝ │ ╘═╤═╝ ┌─────┘ │ │ ʭ ╟─┤ · ╟─┤ ? ╟─┐ │
│ │ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ │ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │ │
│ │ │ ‼ ╟─╢ ├─╢ ├─┤ ʑ ╟───┤ ʭ ║ ┌─┴─╖ └─────┘ │ │ │
│ │ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ┌───┤ · ╟─────────────────────────┘ │ │
│ └──────────┘ │ ╔═╧═╗ │ ├───┘ ╘═╤═╝ │ │
│ └───╢ 0 ║ ┌─┴─╖ ┌─┴─╖ └───────────────────────────────┘ ┌─┴─╖ ╔═══╗
│ ╚═══╝ │ ȶ ╟───┤ · ╟─────────────────────────────────────────────────────┤ › ╟─╢ 0 ║
│ ╘═╤═╝ ╘═╤═╝ ╘═══╝ ╚═══╝
│ ┌─┴─╖ ┌─┴─╖
│ ┌─────┤ ? ╟─┐ │ ɕ ║
│ ┌─┴─╖ ╘═╤═╝ │ ╘═╤═╝
│ ┌───╖ ┌─┤ < ╟───┬─┘ │ │
└────────────┤ ɕ ╟─┤ ╘═══╝ ┌─┴─╖ │ │
╘═══╝ └───────┤ · ╟───┘ │
╘═╤═╝ │
└─────────┘
Ось як це працює.
По-перше, для кожного стека створіть нескінченну послідовність ( ⁞
) рядків, кожна з яких містить пробіли ( …
) відповідно до ширини цього стека.
Значення y стеків говорять нам про те, яке потрібно "рухатись вниз" і на скільки. Додайте відповідну пробільну послідовність, усічену ( ȶ
) до потрібної довжини ( y1 - y2 або y2 - y1, якщо потрібно).
Тепер визначте довжину кожної з послідовностей рядків ( ɕ
), яка повідомляє нам їх висоту. Дізнайтеся, хто з них вище.
Додайте нескінченні послідовності простору до обох стеків.
Використовуйте zip ( ʑ
), щоб з'єднати їх. Для кожної пари рядків з'єднайте їх ( ‼
) разом з додатковим пробілом між ними.
Потім використовуйте ȶ
для обрізання результату цього до найвищої висоти. Роблячи це пізно, нам не потрібно дбати, хто з них потребує підкладці.
Нарешті, знову генеруйте структуру. На даний момент нам більше не потрібен символ в алмазах, тому ми встановлюємо це значення 0. Значення x просто підсумовується та збільшується (так що ширина стека ще можна обчислити як ♯(x << 1)
). Значення y встановлюється на більш високе з двох.
⑦ ↯
Ітерація над символами в рядку
Це ще одна корисна функція, яку я додам до бібліотеки. Наданий рядок, він дає вам ледачу послідовність, що містить кожен код символів.
╓───╖
║ ↯ ║
╙─┬─╜
┌──────────────┴────────────────┐
│ ┌─┐ ╔═══╗ ┌───╖ │
│ └─┤ ┌────╢ 0 ╟─┤ ≠ ╟─┴─┐
┌──────┴─┐ ┌┐ ╔═╧═╕ ┌─┴─╖ ╚═══╝ ╘═╤═╝ │
│ ├─┤├─╢ ├─┤ ? ╟──────────┤ │
│ │ └┘ ╚═╤═╛ ╘═╤═╝ ╔════╗ ┌─┴─╖ │
│ ╔══════╧══╗ ┌─┴─╖ │ ║ −1 ╟─┤ ≠ ╟───┘
│ ║ 2097151 ║ │ ↯ ║ ╚════╝ ╘═══╝
│ ╚═════════╝ ╘═╤═╝
│ ┌─┴──╖ ╔════╗
└─────────────┤ >> ╟─╢ 21 ║
╘════╝ ╚════╝
and
Якщо рядок з 2097151 повертає перший символ. >>
Якщо це 21, видаляє його. Ми перевіряємо як 0, так і -1 з причини, поясненої на сторінці esolangs ; це не стосується цього виклику, але я хочу, щоб функція бібліотеки була правильною.
⑧ ⬖
Перетворення символів у алмазний стек
Ця функція приймає один символ і повертає структуру для вертикального стека, що представляє цей один символ.
╔════╗
║ 96 ║ ╓───╖
╚══╤═╝ ║ ⬖ ║
┌───╖ ┌───╖ ┌─┴─╖ ╙─┬─╜
┌───┤ ɗ ╟─┤ Ḟ ╟─┤ − ║ │
│ ╘═╤═╝ ╘═══╝ ╘═╤═╝ │
│ ┌─┴─╖ ├──────┘ ┌──┐
│ │ ɹ ║ │ ┌───┤ │
│ ╘═╤═╝ ┌─────┘ │ │ │
╔═╧═╗ ┌─┴─╖ ┌─┴─╖ │ ┌┴┐ │
║ 1 ╟─┤ ╟─┤ · ╟─────┐ ╔═╧═╕└┬┘ │
╚═══╝ └─┬─╜ ╘═╤═╝ ┌─┴─╢ ├─┘ ┌┴┐
┌───────────┐ │ └─┐ │ ╚═╤═╛ └┬┘
┌─┴─╖ │ │ ┌───╖ │ └─┐ ╔═╧═╕ ┌──┴─╖ ╔═══╗
┌─────┤ · ╟───┐ │ └─┤ ◆ ╟─┘ ┌─┴─╢ ├─┤ << ╟─╢ 1 ║
┌──┴─┐ ╘═╤═╝ │ │ ╘═╤═╝ │ ╚═╤═╛ ╘════╝ ╚═╤═╝
│ ┌──┴─╖ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖
│ │ >> ╟─┤ ⬗ ╟─╢ ├─╢ ├─┤ ʩ ╟───┤ · ╟─┤ ʑ ╟────────┤ ⸗ ║
│ ╘══╤═╝ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝
│ ╔═╧═╗ ┌┴┐ │ ╔═╧═╗ │ └─────┘ ╔═╧═╗
│ ║ 1 ╟─┐└┬┘ └───╢ 0 ║ ║ 0 ║
│ ╚═══╝ ├─┘ ╚═══╝ ╚═══╝
└────────┘
Ця функція цікава тим, що нам потрібні були алмази, щоб їх по черзі додавали вниз і вгорі. Ось як я це зробив:
Спочатку відніміть 96 (так 'a'
стає 1), отримайте прості множники ( Ḟ
вище), використовуйте ɗ
для додавання елемента 1, якщо послідовність порожній, а потім поверніть ( ɹ
) порядок.
Зніміть перший елемент і зателефонуйте, ◆
щоб стрибнути старт .
Тепер використовуйте ⸗
для створення ледачої послідовності, яка просто чергує числа 0 і 1 на невизначений час.
Використовуйте ʑ
(zip) для цього та інших основних факторів. Для кожного основного коефіцієнта змістіть його на 1 та or
0/1 на нього. Тепер у нас є послідовність, що кодує прості числа та інформацію про верхню / нижню.
Нарешті, використовуйте ʩ
(складіть ліворуч / сукупність). Початкове значення - це стек, який ми створили з першого елемента вище. Для кожного значення ν зателефонуйте ⬗
(додайте новий алмаз) з попереднім стеком, prime ( ν >> 1
) та зверху чи знизу ( ν & 1
).
⑨ Основна програма
Тут ми робимо основну роботу.
┌─────┐
│ ┌─┴─╖
│ │ ⬖ ║
╔═══╗ ╔═╧═╕ ╘═╤═╝
║ 0 ╟─╢ ├───┘
╚═╤═╝ ╚═╤═╛ ┌───╖ ┌───╖ ╔═══╗
└─┐ └───┤ ɱ ╟─┤ ↯ ╟─╢ ║
┌─────────┐ └─────┐ ╘═╤═╝ ╘═══╝ ╚═══╝
│ ┌─┴─╖ │ ┌─┴─╖
│ ┌───┤ · ╟───┐ └─┤ ╟─┐
│ │ ╘═╤═╝ │ └─┬─╜ │
│ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ │
│ │ ❖ ╟─╢ ├─╢ ├─┤ ʩ ╟─┘
│ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝
└───┘ ╔═╧═╗ │ ┌─┴─╖ ┌─┐
║ 0 ╟───┘ ┌─┤ ‹ ╟─┴─┘
╚═══╝ │ ╘═══╝
┌─┴─╖ ┌─┐
┌─┤ ‹ ╟─┴─┘
│ ╘═══╝
╔════╗ ┌───╖ ┌─┴─╖ ┌─┐
║ 10 ╟─┤ ʝ ╟─┤ ‹ ╟─┴─┘
╚════╝ ╘═╤═╝ ╘═══╝
│
Спочатку нанесіть на карту ( ɱ
) символи у рядку введення ( ↯
) та перетворіть їх у алмазний стек за допомогою ⬖
. Зніміть перший елемент з цього і складіть ( ʩ
) над рештою, щоб об'єднати їх усіх ( ❖
). Нарешті, розпакуйте структуру за допомогою, ‹
щоб дістатись до послідовності рядків і з'єднати їх усі ( ʝ
), використовуючи 10 (новий рядок) як роздільник.
Приклад виведення
Вхід:
crusaders
Виведення (для обчислення зайняло 9 секунд; не можна розміщувати тут через обмеження розміру).