Візуалізація слів


20

Давши слово, що складається лише з малих літер, зробіть наступне:

  1. Для кожної літери отримайте основну факторизацію її положення в алфавіті.
  2. За кожним простим фактором, p , намалюйте ромб бічної довжини p і наклейте букву в середину ромба.
  3. Найбільший алмаз знаходиться в середині, наступні менші діаманти (від найбільшого до найменшого) чергуються між нижчим або верхнім.

Примітка: Для отримання листа використовувати бічну довжину 1.

Приклад: кіт

  • c : 3 = 3
  • a : 1 = 1
  • t : 20 = 5 * 2 * 2

Діаграма:

                 .
                . .
               . t .
                . .
                 .
                 .
                . .
   .           .   .
  . .         .     .
 .   .   .   .       .
.  c  . .a. .    t    .
 .   .   .   .       .
  . .         .     .
   .           .   .
                . .
                 .
                 .
                . .
               . t .
                . .
                 .

Приклад: собака

  • d : 4 = 2 * 2
  • o : 15 = 5 * 3
  • г : 7 = 7

Діаграма:

                         .
                        . .
           .           .   .
          . .         .     .
         .   .       .       .
  .     .     .     .         .
 . .   .       .   .           .
. d . .    o    . .      g      .
 . .   .       .   .           .
  .     .     .     .         .
  .      .   .       .       .
 . .      . .         .     .
. d .      .           .   .
 . .       .            . .
  .       . .            .
         .   .
        .  o  .
         .   .
          . .
           .

-20% бонус, якщо ваша програма виводить текстовий файл під назвою "[your-word] .txt". Потім введіть справжнє слово (або фразу, зроблену з малих літер без пробілів), що має принаймні 20 букв, і ніхто ще не обрав, і вставте висновок між а <pre>та а </pre>у вашій відповіді.


На ваших прикладах, здається, використовуються алмази розміром p + 1 крапки ...
Jaykul

3
@Jaykul Добре запитання. Довжина сторони визначається кількістю пробілів між крапками.
геокавель

Відповіді:


8

Матлаб, 466 393 - 20% = 314,4 байт

Гольф: (Не вдалося зберегти ще кілька байт, також завдяки допомозі @ AndreasDeak!)

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));f=fopen([W,'.txt'],'w');for k=1:size(A,1);fprintf(f,[A(k,:),'\n']);end;end

Він також повинен працювати в Octave (openource), але лише з великою кількістю попереджень. Використовуйте цю версію, якщо ви хочете спробувати її в октаві (вихід на консоль, а не файл):

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));disp([A,'']);end

Необережений і пояснив:

function q(W)
function z=g(l,c) %get a square matrix for one prime factor
[x,y]=ndgrid(abs(-l:l));
z=0*y;
z(~x&~y)=c;    %character in the middle
z(x+y==l)=46;  %dots
end;
w=W-96;                %convert word to the corresponding indices                  
n=numel(w);
R=n*26;                %keeps track of the main row 
C=1;                   %keeps track of the current column
A=zeros(2*R);          %make a 'canvas' matrix that is way to big 
for k=1:n;
    f=sort(factor(w(k)));          %get all the factors of current character
    C=C+max(f)+1;                  %update current column
    d=-1;                          %search direction
    r=R;
    for F=fliplr(f);              
        v=-F:F;
        while norm(A(r+v,v+C));    %go up or down until there is enough space to write the prime factor
            r=r+d;
        end;
        A(r+v,v+C)=g(F,W(k));     %insert all the prime factors
        d=-d;
    end;
    C=C+max(f);
end;
A=A(find(sum(A,2)),find(sum(A))); %truncate all the unneccessary padding
f=fopen([W,'.txt'],'w');     %write to file
for k=1:size(A,1);
    fprintf(f,[A(k,:),'\n']);
end;

end

Запитане слово: (І тут як файл: (зменшити масштаб): supercalifragilisticexpialidocious.txt )

                       . . .                   
                      . . . . . .                  
                     . . . . . .                 
                    . . . . . .                
                   . . . . . .               
                  . . . . . .              
                 . . . . . .             
                . . . . . .            
               . . . . . .           
              . . . . . . .          
             . . . . . . . .         
            . . . . . . . . . т. . . . .        
           . . . . . . . . . . . . . . . . . . . . . . . . .       
          . . . . . . . r. . л. . r. . . . л. . . . . х. . . . л. . . . .      
         . . . . . p. . . . . . . . . . . . . . . . . . . p. . . . . . . . .     
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . s .. u .. p .. e .. r .. c ..a .. l .. i .. f .. r ..a .. g .. i .. l .. i .. s. . t .. i .. c .. e .. x .. p .. i ..a .. l .. i .. d .. o .. c .. i .. o .. u .. s .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
         . . . . . p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. . . . . . . . г. . . . . . . . .     
          . . . . . . . . . л. . . . f. . . . . . . . л. . . . . . . . . х. . . . . . л. . . . . . . . . . . . .      
           . . . . . r. . . . i. . . . r. . . i. . . . i. . . . . . i. . . . . i. . . . i. . . . . i. . . . . .       
            . . . . . . . . . . . . . . . . . . . . т. . . . . . . . . . . . . . . . . . .        
             . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . о. . . . о. . . . .         
              . . . . . p. . . . . . . . . . . . . p. . . . . . . . . . . .          
               . . . у. . . . . . х. . . . . . . . у. . .           
                . . . . . . . . . . . . . . . .            
                 . . . . . . . . . . .             
                  . . . . . . . .              
                   . . . . . .               
                    . . . . . .                
                     . . . . . .                 
                      . . . . . .                  
                       . . .                   

Не A=A(find(sum(A,2)),find(sum(A)));вистачить для видалення прокладки за один крок?
Андрас Деак

Я фактично отримав ідеальні результати, коли я вставив вихідний текст між двома <pre>тегами. Чому б не спробувати це!
geokavel

Ви впевнені, що вам потрібно sort(factor())? factorЗдається, MATLAB вже відсортований. І ви можете визначити змінну для max(f), оскільки, здається, двічі використовуєте ту саму кількість.
Андрас Дек

1
@geokavel Я вважаю, що ти дивишся на це навпаки :) З [біблії] (en.wikipedia.org): MATLAB -> "Початковий реліз - 1984", Октава GNU -> Початковий реліз - 1988 ". чи це те, що Mathworks дозволяє копіювати їх комерційний продукт до таких незначних деталей? Або якщо ви просто мали на увазі, чому це все ще вигідно: я впевнений, що наявні набори інструментів MATLAB та функції добре переповнюють Octave (хоча синтаксис Octave іноді багатший! Не кажучи вже про швидкість (я думаю).
Andras Deak

1
@geokavel Це, як сказав AndrasDeak: Octave - це клон Matlab, але, на жаль, не ідеальний, оскільки розробники також намагалися вдосконалити мову. Ось трохи модифікована версія, яка також працює в онлайн-перекладачі: goo.gl/Jk7mpV
flawr

6

Функціонал , неконкурентний, 29199 байт

Мені сподобалося це завдання, тому що воно підкреслило біль у відсутності деяких дуже корисних функцій бібліотеки. Я включу всі ці функції сюди (і в число байтів), тому що я написав їх після публікації цього виклику.

Повне джерело в одному файлі

Пояснення

Як завжди, покращуйте візуалізацію, виконавши javascript:(function(){$('pre,code').css({lineHeight:5/4});})()на консолі браузера.

ɹ Реверс

Як ви можете, чи не знаєте, Funciton постачається з бібліотекою, повною функцій для списків , які є значеннями, закодованими в одне гумористичне ціле число, а також окремою бібліотекою для послідовних оцінок послідовностей , які використовують лямбда-вирази (анонімні функції) в щоб бути лінивим. Звичайно, є також бібліотека для функцій обробки рядків.

Для цього завдання мені потрібна була функція для зворотного перетворення рядка та функція для зворотної зміни послідовності, оціненої лінивою. Дивно, але я мав лише один для списків - саме той, який мені не потрібен. Отже ось зворотні функції для ледачих послідовностей ( ɹ) та для рядків ( ):

              ╓───╖             ╔════╗ ┌────╖        ╓───╖
              ║ ɹ ║             ║ 21 ╟─┤ >> ╟──┐     ║ ⇄ ║
              ╙─┬─╜             ╚════╝ ╘═╤══╝  │     ╙─┬─╜      ┌──┐
          ┌─────┴─────┐                ┌─┴─╖   ├───────┴────────┤  │
        ┌─┴─╖ ┌───╖   │                │ ⇄ ║   │   ╔════╗ ┌───╖ │  │
      ┌─┤   ╟─┤ ɹ ╟─┐ │                ╘═╤═╝   │   ║ −1 ╟─┤ ≠ ╟─┴┐ │
      │ └─┬─╜ ╘═══╝ │ │                ┌─┴─╖ ┌─┴─╖ ╚════╝ ╘═╤═╝  │ │
      │   │   ┌───╖ │ │                │ ‼ ╟─┤ ? ╟──────────┤    │ │
      │   └───┤ ʬ ╟─┘ │                ╘═╤═╝ ╘═╤═╝  ╔═══╗ ┌─┴─╖  │ │
      │       ╘═╤═╝   │                ┌─┴─╖ ╔═══╗  ║ 0 ╟─┤ ≠ ╟──┘ │
      │ ╔═══╗ ┌─┴─╖   │              ┌─┤ ʃ ╟─╢ 1 ║  ╚═╤═╝ ╘═══╝    │
      └─╢ 0 ╟─┤ ? ╟───┘              │ ╘═╤═╝ ╚═══╝    │            │
        ╚═══╝ ╘═╤═╝                  │   └────────────┘            │
                │                    └─────────────────────────────┘

Використовується послідовність лінивих послідовностей ʬ, яка "додає елемент до кінця лінивої послідовності". Рядок використовується один ʃ(підряд) та (рядок об'єднати).

Прайми

Хоча я міг би зробити просту факторизацію, просто намагаючись розділити n на всі чинники, щоб вирішити, що хочу функціонувати бібліотеку, яка генерує прості числа. Наступна функція займає ціле число n та реалізує сито Ератосфена для генерації всіх простих чисел до n . Це робиться як лінива послідовність, тому він генерує лише стільки простих ліній, скільки ви насправді оцінюєте.

                                       ╓───╖
                                       ║ Ṗ ║
                                 ╔═══╗ ╙─┬─╜
                                 ║ 0 ║ ┌─┴─╖
                                 ╚═╤═╝ │ ♭ ║
                          ╔═══╗ ┌──┴─╖ ╘═╤═╝
                          ║ 2 ╟─┤ Ṗp ╟───┘
                          ╚═══╝ ╘══╤═╝
    ┌──────────────┐               │
    │              ├─────────────────────────────────────────┐
    │            ┌─┴─╖                                       │
    │          ┌─┤ · ╟────────────────────────────┐   ╓┬───╖ │
    │          │ ╘═╤═╝                            ├───╫┘Ṗp ╟─┤
    │          │   │           ╔═══╗ ┌────╖     ┌─┴─╖ ╙─┬──╜ │
    │          │   │           ║ 1 ╟─┤ >> ╟─────┤ · ╟───┴─┐  │
    │          │   │  ┌───╖    ╚═══╝ ╘══╤═╝     ╘═╤═╝     │  │
    │          │ ┌─┴──┤ ♯ ╟─────┐    ┌──┴─╖ ┌───╖ │       │  │
    │          │ │    ╘═══╝ ┌─┐ │ ┌──┤ Ṗp ╟─┤ ♭ ╟─┴─┐     │  │
    │          │ │          ├─┘ └─┤  ╘══╤═╝ ╘═══╝ ┌─┘     │  │
    │          │ │        ╔═╧═╕ ┌─┴─╖ ┌─┴─╖     ┌─┴─╖     │  │
    │          │ └────────╢   ├─┤ · ╟─┤ ? ╟─────┤ · ╟─┐   │  │
    │          │ ┌───╖    ╚═╤═╛ ╘═╤═╝ ╘═╤═╝     ╘═╤═╝ │   │  │
    │        ┌─┴─┤ ♭ ╟─┐ ┌──┴─╖   │   ┌─┴─╖       │   │   │  │
    │        │   ╘═══╝ └─┤ Ṗp ╟───┘ ┌─┤ ? ╟───────┘   │   │  │
    │ ┌───╖  │  ╔════╗   ╘══╤═╝     │ ╘═╤═╝           │   │  │
  ┌─┴─┤ ÷ ╟──┘  ║ −1 ║   ┌──┴─╖   ╔═╧═╗ │            ┌┴┐  │  │
  │   ╘═╤═╝     ╚══╤═╝ ┌─┤ >> ╟─┐ ║ 0 ║              └┬┘  │  │
  │   ┌─┴─╖ ┌────╖ │   │ ╘════╝ │ ╚═══╝               │   │  │
  │   │ × ╟─┤ << ╟─┘ ┌─┴─┐    ╔═╧═╗                   │   │  │
  │   ╘═╤═╝ ╘══╤═╝  ┌┴┐ ┌┴┐   ║ 1 ╟───────────────────┴─┐ │  │
  └─────┘     ┌┴┐   └┬┘ └┬┘   ╚═══╝                     ├─┘  │
              └┬┘    │   └──────────────────────────────┘    │
             ┌─┴─╖ ┌─┴──╖                                    │
             │ ÷ ╟─┤ << ╟─┐                                  │
             ╘═╤═╝ ╘════╝ ├──────────────────────────────────┘
              ┌┴┐         │
              └┬┘         │
      ╔════╗ ┌─┴──╖       │
      ║ −1 ╟─┤ << ╟───────┘
      ╚════╝ ╘════╝

Помічна функція Ṗp, займає:

  • Запуск лічильника, який просто продовжує зменшуватися, поки не досягне 0.

  • Сито, у якому встановлено трохи для кожного числа, яке, як відомо, не є простим. Спочатку найменш значущий біт представляє число 2, але ми зміщуємо це право з кожною ітерацією.

  • Число n, яке вказує, яке число представлено найнижчим бітом сита; це збільшується з кожною ітерацією.

При кожній ітерації, якщо найнижчий біт сита дорівнює 0, ми знайшли просте n . Потім ми використовуємо формулу, яку я вже описав у Заповнення рядків, стовпців та діагоналей сітки NxN, щоб встановити кожен n -й біт в решеті, перш ніж переходити до наступної ітерації.

Основна факторизація

                             ╓───╖
                             ║ Ḟ ║
                             ╙─┬─╜
                       ┌───────┴──────┐
                       │ ┌───╖ ┌────╖ │
                       └─┤ Ṗ ╟─┤ Ḟp ╟─┘
                         ╘═══╝ ╘═╤══╝
                                 │
               ┌────────────────────────────────────────────┐
               │                                     ╓┬───╖ │
       ┌───────┴─┐     ┌───────────────────────┐   ┌─╫┘Ḟp ╟─┘
       │ ╔═══╗ ┌─┴─╖ ┌─┴─╖ ┌───┐ ┌────╖      ┌─┴─╖ │ ╙────╜
       │ ║ 0 ╟─┤   ╟─┤ · ╟─┘┌┐ └─┤ Ḟp ╟──┐ ┌─┤ · ╟─┴──┐
       │ ╚═══╝ └─┬─╜ ╘═╤═╝  └┤   ╘═╤══╝  ├─┘ ╘═╤═╝    │
       │       ┌─┴─┐ ┌─┴─╖ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴──╖ ┌─┴─╖
       │       │   └─┤ · ╟─╢   ├─┤ ? ╟─┤ · ╟─┤ ÷% ╟─┤ · ╟─┐
       │       │     ╘═╤═╝ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤══╝ ╘═╤═╝ │
       │       │    ┌──┴─╖   │   ┌─┴─╖ ┌─┴─╖   └──────┘   │
       │       │    │ Ḟp ╟───┘ ┌─┤ ? ╟─┤ ≤ ║              │
       │     ┌─┴─╖  ╘══╤═╝     │ ╘═╤═╝ ╘═╤═╝              │
       └─────┤ · ╟─────┘     ╔═╧═╗ │   ╔═╧═╗              │
             ╘═╤═╝           ║ 0 ║     ║ 2 ║              │
               │             ╚═══╝     ╚═══╝              │
               └──────────────────────────────────────────┘

Це досить прямо. Просто перейдіть через праймери до n і подивіться, на які ділять n . Якщо ділити n , не забудьте продовжити з тим самим простим простором, щоб ми повернули його кілька разів, якщо він ділить n багаторазово. Це повертає порожню послідовність для будь-якого числа менше 2.

Створіть алмаз

Ця функція генерує єдиний алмаз із заданим символом та радіусом. Він використовує лише символ, щоб розмістити його в центрі ромба.

                                   ┌───╖
             ┌─────────────────────┤ ♯ ╟───────────┬─────────┐
             │ ┌───╖ ╔═══╗   ┌───┐ ╘═══╝           │         │
             └─┤ ♫ ╟─╢ 0 ║   │ ┌─┴─╖               │         │
               ╘═╤═╝ ╚═══╝   │ │ ʭ ╟───┐           │         │
               ┌─┴─╖   ┌─────┘ ╘═╤═╝   │           │         │
               │ ɱ ╟───┤ ┌───╖ ┌─┴─╖ ╔═══╗   ╓───╖ │         │
               ╘═╤═╝   └─┤ ɹ ╟─┤ ʓ ╟─╢ 1 ║ ┌─╢ ◇ ╟─┤         │
                 │ ╔═══╗ ╘═══╝ ╘═══╝ ╚═══╝ │ ╙───╜ │         │
                 │ ║ 0 ║                   │     ┌─┴─╖       │
                 │ ╚═╤═╝                   │     │ ♭ ║       │
               ╔═╧═╕ │   ╔════╗            │     ╘═╤═╝       │
           ┌───╢   ├─┘ ┌─╢ 21 ║          ┌─┴─╖   ┌─┴─╖     ┌─┴─┐
           │   ╚═╤═╛   │ ╚════╝ ┌────────┤ · ╟───┤ · ╟─┐ ┌─┴─╖ │
           │   ┌─┴─╖ ┌─┴──╖ ┌───┘        ╘═╤═╝   ╘═╤═╝ ├─┤ = ║ │
           │ ┌─┤ ‼ ╟─┤ >> ║ │              │     ┌─┴─╖ │ ╘═╤═╝ │
           │ │ ╘═══╝ ╘═╤══╝ │              │   ┌─┤ ? ╟─┘   │   │
           │ │   ┌───╖ │ ┌──┘              │   │ ╘═╤═╝     │   │
           │ └─┬─┤ ⇄ ╟─┘ │     ┌─────┐     │   │ ┌─┴─╖     │   │
           │   │ ╘═══╝ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ └─┤ · ╟──┬──┘   │
           │   └───────┤ · ╟─┤ ? ╟─┤ · ╟─┤ ‼ ║   ╘═╤═╝  │      │
           │           ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝   ┌─┴─╖  │      │
           │             └─────┘     └─┬───┘ ┌───┤ … ║  │      │
           │               ┌─────┐     │     │   ╘═╤═╝  │      │
           │            ╔══╧═╗ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╔═╧══╗ │      │
           │            ║ 32 ║ │ … ╟─┤ ‼ ╟─┤ ‼ ║ ║ 32 ║ │      │
           │            ╚════╝ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╚════╝ │      │
           │                   ┌─┴─╖       ╔═╧══╗       │      │
           │               ┌───┤ − ╟───┬─┐ ║ 46 ║       │      │
           │             ┌─┴─╖ ╘═══╝   │ │ ╚════╝       │      │
           └─────────────┤ · ╟─────────┘ └──────────────┘      │
                         ╘═╤═╝                                 │
                           └───────────────────────────────────┘

Це робить сильне використання лінивих послідовностей. Ось як це працює:

  • Створіть послідовність цілих чисел від 0 до r (включно).

  • Для кожного такого цілого числа α генеруйте рядок, що складається з ( r - α ) пробілів ( ), а потім крапки, а потім пробілів α - за винятком випадків, коли α = r ; Тепер ми маємо верхню ліву чверть алмазу.

  • До кожного з цих рядків додайте ще одну копію цього ж рядка, але з символами, перевернутими ( ), а потім перший символ видалено ( >> 21). Тепер ми маємо верхню половину алмазу.

  • Візьміть цю послідовність і додайте до неї ту саму послідовність, але перевернуту ( ɹ) і з вилученим першим елементом ( ʓ). Зараз у нас є весь алмаз.

Зараз у нас є струни, які складають алмаз, але нам потрібно трохи більше інформації. Нам потрібно знати, де знаходиться вертикальна середина ромба. Спочатку це звичайно r , але після того, як ми додали інші алмази до верху і внизу цього, нам потрібно буде відслідковувати положення «середнього» алмазу, щоб ми могли вертикально вирівняти інші пачки алмазів правильно. . Те ж саме стосується горизонтального розміру алмазу (потрібно, щоб прикріпити алмази вгорі і внизу). Я також вирішив слідкувати за листом; Мені це потрібно, тому що в іншому випадку функція (до якої ми потрапимо в наступному розділі) повинна мати чотири параметри, але Funciton дозволяє лише три.

                             ┌─────────────────┐
                             │  ╓───╖          │
                             ├──╢ ◆ ╟──┐       │
                             │  ╙───╜  │       │
                             │   ┌─────┴───┐   │
                           ┌─┴─╖ │ ┌───╖ ┌─┴─╖ │
                         ┌─┤ · ╟─┴─┤ › ╟─┤ › ║ │
                         │ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝ │
                         │ ┌─┴─╖     │   ┌─┴─╖ │
                         │ │ ◇ ╟─────────┤ › ╟─┘
                         │ ╘═╤═╝         ╘═══╝
                         └───┘

Ми використовуємо API списку ( додає елементи на передню частину списку) для створення структури, що містить [ x , y , c , q ], де x - координата x горизонтального центру ромба, y - y- координата базової лінії, c - літера, q - лінива послідовність рядків. Ця структура буде використовуватися для того, щоб містити всі проміжні етапи відтепер.

Додайте ромби вертикально

Ця функція приймає наявний алмазний стек, радіус і булеве значення, що вказує, чи потрібно додати новий алмаз до верху (справжній) або знизу (помилковий).

                 ┌─────────────────────────────────────────────────┐
               ┌─┴─╖         ┌───────────────────────────┐ ┌───╖ ┌─┴─╖
           ┌───┤ · ╟─────────┘ ╔═══╗ ┌───────────────┐   ├─┤ ‹ ╟─┤ ‹ ║
           │   ╘═╤═╝           ║ 1 ║ │ ╓───╖         │   │ ╘═╤═╝ ╘═╤═╝
           │     │             ╚═╤═╝ └─╢ ⬗ ╟─┐       │ ┌─┴─╖ │   ┌─┴─╖
           │     │ ┌───╖ ┌───╖ ┌─┴──╖  ╙─┬─╜ │       └─┤ · ╟─┘ ┌─┤ ‹ ╟─┐
           │   ┌─┴─┤ + ╟─┤ ♯ ╟─┤ << ║    │   │         ╘═╤═╝   │ ╘═══╝ │
           │   │   ╘═╤═╝ ╘═══╝ ╘═╤══╝    │ ┌─┴─╖         │     │       │
           │   │   ┌─┴─╖         └───────┴─┤ · ╟───┐   ┌─┴─╖   │       │
           │   └───┤ ? ╟─┐                 ╘═╤═╝ ┌─┴───┤ · ╟─┐ │       │
           │       ╘═╤═╝ ├───────────────────┘   │     ╘═╤═╝ │ │       │
           │ ┌───╖ ┌─┴─╖ │               ┌─────┐ │ ┌───╖ │   │ │       │
           └─┤ › ╟─┤ › ║ │       ┌───╖ ┌─┴─╖   │ └─┤ − ╟─┘   │ │       │
             ╘═╤═╝ ╘═╤═╝ │     ┌─┤ ‼ ╟─┤ ‼ ║   │   ╘═╤═╝     │ │       │
               │   ┌─┴─╖ │     │ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ ┌─┴─╖     │ │       │
               ┌───┤ · ╟─┘     │ ┌─┴─╖   ├───┤ · ╟─┤ … ║     │ │       │
     ┌───┐     │   ╘═╤═╝       └─┤ · ╟───┘   ╘═╤═╝ ╘═╤═╝     │ │       │
     │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖         ╘═╤═╝         │  ╔══╧═╗     │ │       │
     │ │ ʭ ╟─┤ ? ╟─┤ › ╟─┐ ╔═══╗ ╔═╧═╕         │  ║ 32 ║     │ │       │
     │ ╘═╤═╝ ╘═╤═╝ ╘═══╝ │ ║ 0 ╟─╢   ├─────────┘  ╚════╝     │ │       │
     │ ┌─┘   ┌─┴─╖       │ ╚═══╝ ╚═╤═╛                       │ │       │
     │ └─┬───┤ ʭ ╟─┐   ┌─┴─╖     ┌─┴─╖                       │ │       │
     │ ┌─┴─╖ ╘═══╝ ├───┤ · ╟─────┤ ɱ ║                       │ │       │
     └─┤ · ╟───────┘   ╘═╤═╝     ╘═╤═╝                       │ │       │
       ╘═╤═╝             │       ┌─┴─╖                       │ │       │
         │               └─────┬─┤ ◇ ╟───────────────────────┘ │       │
         │                     │ ╘═══╝                       ┌─┴─╖     │
         │                     └─────────────────────────────┤ · ╟─────┘
         │                                                   ╘═╤═╝
         └─────────────────────────────────────────────────────┘

Це також досить прямо; використовувати для розпакування структури; використовувати для створення нового алмазу; використовувати ɱ(карту), щоб додати пробіли до початку та кінця кожної струни у новому діаманті, щоб усі вони мали однакову ширину; додавання ( ʭ) нових рядків до старого (якщо знизу) або старого до нового (якщо зверху); і нарешті використовувати для побудови структури, що містить усі нові значення. Зокрема, якщо ми додаємо до низу, y не змінюється, але якщо ми додаємо до вершини, y повинно збільшуватися на ♯(r << 1)( r - радіус нового алмазу).

Об'єднайте стеки горизонтально

Це найбільша функція їх усіх. Я не заперечую, що це було досить чуйно. Він займає два стеки і з'єднує їх по горизонталі, дотримуючись правильного вертикального вирівнювання.

                           ┌──────────────────────────────────┬───────────────────────┐
                           │     ┌──────────────────┐       ┌─┴─╖                   ┌─┴─╖
                           │     │    ┌───────────┐ └───────┤ · ╟───┬───────────────┤ · ╟─────────────┐
                           │     │  ┌─┴─╖         │         ╘═╤═╝   │               ╘═╤═╝             │
                           │     │  │ ‹ ╟───┐     │         ┌─┴─╖ ┌─┴─╖               │               │
                           │     │  ╘═╤═╝ ┌─┴─╖   └─────────┤ · ╟─┤ · ╟─────────┐     │               │
                           │     │    ├─┐ │ ‹ ╟───┐         ╘═╤═╝ ╘═╤═╝         │     │               │
                           │     │    └─┘ ╘═╤═╝ ┌─┴─╖ ╓───╖ ┌─┴─╖   │           │     │               │
                           │     │          │   │ ‹ ╟─╢ ❖ ╟─┤ ‹ ║   │           │     │               │
                           │     │          │   ╘═╤═╝ ╙───╜ ╘═╤═╝ ┌─┴─╖ ┌─┐     │     │               │
                           │     │          │     │           └───┤ ‹ ║ └─┤     │     │               │
                           │     │          │     │               ╘═╤═╝ ┌─┴─╖   │     │               │
                           │     │          │     │                 └───┤ ‹ ║   │     │               │
                           │     │          │     └─────────────────┐   ╘═╤═╝   │     │               │
                           │     │          │                     ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖             │
                           │     │          │      ┌──────────────┤ · ╟─┤ · ╟─┤ · ╟─┤ · ╟──────┐      │
                           │     │          └──────┤              ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝      │      │
                           │   ┌─┴─╖             ┌─┴─╖            ┌─┴─╖   │     │     │        │      │
                           │ ┌─┤ · ╟─────────────┤ · ╟────────────┤ · ╟───┘     │     │        │      │
                           │ │ ╘═╤═╝             ╘═╤═╝            ╘═╤═╝         │     │        │      │
                           │ │   │                 │         ┌────╖ │         ┌─┴─╖   │        │      │
       ╔═══╗ ┌────╖        │ │   │                 │       ┌─┤ << ╟─┴─────────┤ · ╟─┐ │        │      │
       ║ 1 ╟─┤ << ╟────────┘ │   │                 │       │ ╘═╤══╝           ╘═╤═╝ │ │        │      │
       ╚═══╝ ╘═╤══╝ ╔════╗   │   │               ┌─┴─╖     │ ┌─┴─╖              │   │ │     ┌──┴──┐   │
             ┌─┴─╖  ║ 32 ╟─┐ │   │ ┌─────────────┤ · ╟───┐ │ │ ♯ ║              │   │ │   ┌─┴─╖ ┌─┴─╖ │
             │ ♯ ║  ╚════╝ │ │   └─┤ ┌───╖       ╘═╤═╝   │ │ ╘═╤═╝ ┌───╖ ╔════╗ │   │ │ ┌─┤ ? ╟─┤ < ║ │
             ╘═╤═╝   ┌───╖ │ │     └─┤ − ╟─────────┴─┐   │ │   └───┤ … ╟─╢ 32 ║ │   │ │ │ ╘═╤═╝ ╘═╤═╝ │
               └─────┤ … ╟─┘ │       ╘═╤═╝         ┌─┴─╖ │ └───┐   ╘═╤═╝ ╚════╝ │   │ │ │ ┌─┴─╖   ├───┘
                     ╘═╤═╝   │ ┌───╖ ┌─┴─╖ ┌───────┤ · ╟─┴─┐ ╔═╧═╗ ┌─┴─╖ ┌──────┘   │ │ └─┤ · ╟───┘
                       │   ┌─┴─┤ ʭ ╟─┤ ȶ ║ │ ┌───╖ ╘═╤═╝   │ ║ 1 ║ │ ⁞ ║ │ ┌────────┘ │   ╘═╤═╝
                     ┌─┴─╖ │   ╘═╤═╝ ╘═╤═╝ └─┤ > ╟───┴─┐   │ ╚═══╝ ╘═╤═╝ │ │   ┌──────┘     └────┐
                     │ ⁞ ║ │   ┌─┴─╖ ┌─┴─╖   ╘═╤═╝     │ ┌─┴─╖ ┌───╖ │   │ │ ┌─┴─╖ ┌───╖ ┌───╖ ┌─┴─╖
                     ╘═╤═╝ └───┤ ? ╟─┤ · ╟─────┴─┐     │ │ − ╟─┤ ȶ ╟─┴─┐ │ │ │ + ╟─┤ ♯ ╟─┤ › ╟─┤ › ║
                     ┌─┴─╖     ╘═╤═╝ ╘═╤═╝       │     │ ╘═╤═╝ ╘═╤═╝   │ │ │ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╘═╤═╝
┌────────────────────┤ · ╟───────┴───┐ └─┐     ┌─┴─╖   └───┘   ┌─┴─╖   │ │ └───┘           │     │
│                    ╘═╤═╝         ┌─┴─╖ │   ┌─┤ · ╟───────────┤ · ╟───┘ │                       │
│ ┌────────────────┐   │   ┌───────┤ · ╟─┘   │ ╘═╤═╝           ╘═╤═╝     │                       │
│ │ ╔════╗ ┌───╖ ┌─┴─╖ └───┤ ┌───╖ ╘═╤═╝     │   │               │     ┌─┴───┐                   │
│ │ ║ 32 ╟─┤ ‼ ╟─┤ · ╟───┐ └─┤ ʭ ╟───┘       │   │             ┌─┴─╖ ┌─┴─╖ ┌─┴─╖                 │
│ │ ╚════╝ ╘═╤═╝ ╘═╤═╝   │   ╘═╤═╝     ┌─────┘   │             │ ʭ ╟─┤ · ╟─┤ ? ╟─┐               │
│ │        ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖       │             ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │               │
│ │        │ ‼ ╟─╢   ├─╢   ├─┤ ʑ ╟───┤ ʭ ║     ┌─┴─╖             └─────┘     │   │               │
│ │        ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ┌───┤ · ╟─────────────────────────┘   │               │
│ └──────────┘     │   ╔═╧═╗   │       ├───┘   ╘═╤═╝                             │               │
│                  └───╢ 0 ║ ┌─┴─╖   ┌─┴─╖       └───────────────────────────────┘             ┌─┴─╖ ╔═══╗
│                      ╚═══╝ │ ȶ ╟───┤ · ╟─────────────────────────────────────────────────────┤ › ╟─╢ 0 ║
│                            ╘═╤═╝   ╘═╤═╝                                                     ╘═══╝ ╚═══╝
│                            ┌─┴─╖   ┌─┴─╖
│                      ┌─────┤ ? ╟─┐ │ ɕ ║
│                    ┌─┴─╖   ╘═╤═╝ │ ╘═╤═╝
│            ┌───╖ ┌─┤ < ╟───┬─┘   │   │
└────────────┤ ɕ ╟─┤ ╘═══╝ ┌─┴─╖   │   │
             ╘═══╝ └───────┤ · ╟───┘   │
                           ╘═╤═╝       │
                             └─────────┘

Ось як це працює.

  • По-перше, для кожного стека створіть нескінченну послідовність ( ) рядків, кожна з яких містить пробіли ( ) відповідно до ширини цього стека.

  • Значення y стеків говорять нам про те, яке потрібно "рухатись вниз" і на скільки. Додайте відповідну пробільну послідовність, усічену ( ȶ) до потрібної довжини ( y1 - y2 або y2 - y1, якщо потрібно).

  • Тепер визначте довжину кожної з послідовностей рядків ( ɕ), яка повідомляє нам їх висоту. Дізнайтеся, хто з них вище.

  • Додайте нескінченні послідовності простору до обох стеків.

  • Використовуйте zip ( ʑ), щоб з'єднати їх. Для кожної пари рядків з'єднайте їх ( ) разом з додатковим пробілом між ними.

  • Потім використовуйте ȶдля обрізання результату цього до найвищої висоти. Роблячи це пізно, нам не потрібно дбати, хто з них потребує підкладці.

Нарешті, знову генеруйте структуру. На даний момент нам більше не потрібен символ в алмазах, тому ми встановлюємо це значення 0. Значення x просто підсумовується та збільшується (так що ширина стека ще можна обчислити як ♯(x << 1)). Значення y встановлюється на більш високе з двох.

Ітерація над символами в рядку

Це ще одна корисна функція, яку я додам до бібліотеки. Наданий рядок, він дає вам ледачу послідовність, що містить кожен код символів.

                                        ╓───╖
                                        ║ ↯ ║
                                        ╙─┬─╜
                           ┌──────────────┴────────────────┐
                           │      ┌─┐          ╔═══╗ ┌───╖ │
                           │      └─┤     ┌────╢ 0 ╟─┤ ≠ ╟─┴─┐
                    ┌──────┴─┐ ┌┐ ╔═╧═╕ ┌─┴─╖  ╚═══╝ ╘═╤═╝   │
                    │        ├─┤├─╢   ├─┤ ? ╟──────────┤     │
                    │        │ └┘ ╚═╤═╛ ╘═╤═╝ ╔════╗ ┌─┴─╖   │
                    │ ╔══════╧══╗ ┌─┴─╖   │   ║ −1 ╟─┤ ≠ ╟───┘
                    │ ║ 2097151 ║ │ ↯ ║       ╚════╝ ╘═══╝
                    │ ╚═════════╝ ╘═╤═╝
                    │             ┌─┴──╖ ╔════╗
                    └─────────────┤ >> ╟─╢ 21 ║
                                  ╘════╝ ╚════╝

andЯкщо рядок з 2097151 повертає перший символ. >>Якщо це 21, видаляє його. Ми перевіряємо як 0, так і -1 з причини, поясненої на сторінці esolangs ; це не стосується цього виклику, але я хочу, щоб функція бібліотеки була правильною.

Перетворення символів у алмазний стек

Ця функція приймає один символ і повертає структуру для вертикального стека, що представляє цей один символ.

                                   ╔════╗
                                   ║ 96 ║  ╓───╖
                                   ╚══╤═╝  ║ ⬖ ║
                        ┌───╖ ┌───╖ ┌─┴─╖  ╙─┬─╜
                    ┌───┤ ɗ ╟─┤ Ḟ ╟─┤ − ║    │
                    │   ╘═╤═╝ ╘═══╝ ╘═╤═╝    │
                    │   ┌─┴─╖         ├──────┘  ┌──┐
                    │   │ ɹ ║         │     ┌───┤  │
                    │   ╘═╤═╝   ┌─────┘     │   │  │
                  ╔═╧═╗ ┌─┴─╖ ┌─┴─╖         │  ┌┴┐ │
                  ║ 1 ╟─┤   ╟─┤ · ╟─────┐ ╔═╧═╕└┬┘ │
                  ╚═══╝ └─┬─╜ ╘═╤═╝   ┌─┴─╢   ├─┘ ┌┴┐
            ┌───────────┐ │     └─┐   │   ╚═╤═╛   └┬┘
          ┌─┴─╖         │ │ ┌───╖ │   └─┐ ╔═╧═╕ ┌──┴─╖ ╔═══╗
    ┌─────┤ · ╟───┐     │ └─┤ ◆ ╟─┘   ┌─┴─╢   ├─┤ << ╟─╢ 1 ║
 ┌──┴─┐   ╘═╤═╝   │     │   ╘═╤═╝     │   ╚═╤═╛ ╘════╝ ╚═╤═╝
 │ ┌──┴─╖ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖ ┌─┴─╖        ┌─┴─╖
 │ │ >> ╟─┤ ⬗ ╟─╢   ├─╢   ├─┤ ʩ ╟───┤ · ╟─┤ ʑ ╟────────┤ ⸗ ║
 │ ╘══╤═╝ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝        ╘═╤═╝
 │  ╔═╧═╗  ┌┴┐    │   ╔═╧═╗   │       └─────┘          ╔═╧═╗
 │  ║ 1 ╟─┐└┬┘    └───╢ 0 ║                            ║ 0 ║
 │  ╚═══╝ ├─┘         ╚═══╝                            ╚═══╝
 └────────┘

Ця функція цікава тим, що нам потрібні були алмази, щоб їх по черзі додавали вниз і вгорі. Ось як я це зробив:

  • Спочатку відніміть 96 (так 'a'стає 1), отримайте прості множники ( вище), використовуйте ɗдля додавання елемента 1, якщо послідовність порожній, а потім поверніть ( ɹ) порядок.

  • Зніміть перший елемент і зателефонуйте, щоб стрибнути старт .

  • Тепер використовуйте для створення ледачої послідовності, яка просто чергує числа 0 і 1 на невизначений час.

  • Використовуйте ʑ(zip) для цього та інших основних факторів. Для кожного основного коефіцієнта змістіть його на 1 та or0/1 на нього. Тепер у нас є послідовність, що кодує прості числа та інформацію про верхню / нижню.

  • Нарешті, використовуйте ʩ(складіть ліворуч / сукупність). Початкове значення - це стек, який ми створили з першого елемента вище. Для кожного значення ν зателефонуйте (додайте новий алмаз) з попереднім стеком, prime ( ν >> 1) та зверху чи знизу ( ν & 1).

⑨ Основна програма

Тут ми робимо основну роботу.

                       ┌─────┐
                       │   ┌─┴─╖
                       │   │ ⬖ ║
               ╔═══╗ ╔═╧═╕ ╘═╤═╝
               ║ 0 ╟─╢   ├───┘
               ╚═╤═╝ ╚═╤═╛ ┌───╖ ┌───╖ ╔═══╗
                 └─┐   └───┤ ɱ ╟─┤ ↯ ╟─╢   ║
       ┌─────────┐ └─────┐ ╘═╤═╝ ╘═══╝ ╚═══╝
       │       ┌─┴─╖     │ ┌─┴─╖
       │   ┌───┤ · ╟───┐ └─┤   ╟─┐
       │   │   ╘═╤═╝   │   └─┬─╜ │
       │ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ │
       │ │ ❖ ╟─╢   ├─╢   ├─┤ ʩ ╟─┘
       │ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝
       └───┘   ╔═╧═╗   │   ┌─┴─╖ ┌─┐
               ║ 0 ╟───┘ ┌─┤ ‹ ╟─┴─┘
               ╚═══╝     │ ╘═══╝
                       ┌─┴─╖ ┌─┐
                     ┌─┤ ‹ ╟─┴─┘
                     │ ╘═══╝
      ╔════╗ ┌───╖ ┌─┴─╖ ┌─┐
      ║ 10 ╟─┤ ʝ ╟─┤ ‹ ╟─┴─┘
      ╚════╝ ╘═╤═╝ ╘═══╝
               │

Спочатку нанесіть на карту ( ɱ) символи у рядку введення ( ) та перетворіть їх у алмазний стек за допомогою . Зніміть перший елемент з цього і складіть ( ʩ) над рештою, щоб об'єднати їх усіх ( ). Нарешті, розпакуйте структуру за допомогою, щоб дістатись до послідовності рядків і з'єднати їх усі ( ʝ), використовуючи 10 (новий рядок) як роздільник.

Приклад виведення

Вхід:

crusaders

Виведення (для обчислення зайняло 9 секунд; не можна розміщувати тут через обмеження розміру).

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.