Зображення приховати і шукати


15

У цьому виклику вам потрібно знайти конкретний піксель у фотографії (зроблений реальною камерою).

Вам передається (R, G, B) кортеж і зображення, і вам потрібно повернути точку (x, y) в межах зображення, що відповідає заданому кольорові RGB . На зображенні може бути кілька точок, що відповідають кольорові; вам потрібно знайти лише 1.

Проблема в тому , що ви повинні зробити це під час читання в кілька пікселів , як це можливо . Ваша оцінка буде загальною кількістю прочитаних пікселів у всіх тестових випадках.

За бажанням ви можете прочитати все зображення в масиві значень RGB, якщо ви не зробите жодної обробки пікселів. Я допускаю це виключно з метою ефективності. Наприклад, у Python list(Image.open("image_name+".jpg").convert("RGB").getdata())це нормально.

Місця жорсткого кодування заборонені. Ваш алгоритм повинен працювати добре, ніж лише тести, наведені нижче. Вам не дозволяється зберігати дані між тестовими кейсами. Я вибрав значення RGB, які нечасто ( <10) відображаються на зображенні (на випадок, якщо це змінить ваш алгоритм). Якщо ви використовуєте випадковість у своєму алгоритмі, будь-ласка, встановіть насіння, щоб ваш показник був постійним.

Зображення можна знайти на Github

Тестові приклади:

image_name: 
(r, g, b) [all possible answers]

barn:
(143,91,33) [(887,1096),(2226,1397),(2007,1402),(2161,1508),(1187,1702)]
(53,35,59) [(1999,1260)]
(20,24,27) [(1328,1087),(154,1271)]
(167,148,176) [(1748,1204)]
(137,50,7) [(596,1498)]
(116,95,94) [(1340,1123)]
(72,49,59) [(1344,857),(1345,858),(1380,926),(1405,974),(1480,1117)]
(211,163,175) [(1963,745)]
(30,20,0) [(1609,1462),(1133,1477),(1908,1632)]
(88,36,23) [(543,1494),(431,1575)]
daisy:
(21,57,91) [(1440,1935),(2832,2090),(2232,2130),(1877,2131),(1890,2132)]
(201,175,140) [(1537,1749),(2319,1757)]
(169,160,0) [(2124,759)]
(113,123,114) [(1012,994),(2134,1060),(1803,1183),(1119,1335)]
(225,226,231) [(3207,829),(3256,889),(3257,889),(1434,981),(2599,1118),(2656,1348),(2656,1351)]
(17,62,117) [(2514,3874),(2336,3885)]
(226,225,204) [(3209,812)]
(119,124,146) [(2151,974),(2194,1021),(2194,1022),(2202,1034),(2812,1500)]
(2,63,120) [(2165,3881),(2326,3882),(2330,3882),(2228,3887)]
(200,167,113) [(1453,1759)]
dandelion:
(55,2,46) [(667,825),(668,825)]
(95,37,33) [(1637,1721),(1625,1724),(1405,1753),(2026,2276),(2016,2298)]
(27,41,50) [(1267,126),(424,519),(2703,1323),(1804,3466)]
(58,92,129) [(2213,3274)]
(136,159,105) [(1300,2363),(2123,2645),(1429,3428),(1430,3432),(1417,3467),(1393,3490),(1958,3493)]
(152,174,63) [(2256,2556)]
(78,49,19) [(2128,2836)]
(217,178,205) [(2736,3531)]
(69,95,130) [(870,305),(493,460),(2777,1085),(2791,1292),(2634,3100)]
(150,171,174) [(2816,1201),(2724,2669),(1180,2706),(1470,3215),(1471,3215)]
gerbera:
(218,186,171) [(4282,1342)]
(180,153,40) [(4596,1634),(4369,1682),(4390,1708),(4367,1750)]
(201,179,119) [(4282,1876),(4479,1928)]
(116,112,149) [(5884,252),(4168,371),(4169,372),(4164,384),(5742,576)]
(222,176,65) [(4232,1548)]
(108,129,156) [(5341,3574),(5339,3595),(5302,3734)]
(125,99,48) [(4548,1825),(4136,1932),(5054,2013),(5058,2023),(5058,2035),(5055,2050),(5031,2073)]
(170,149,32) [(4461,1630),(4520,1640)]
(156,185,203) [(3809,108)]
(103,67,17) [(4844,1790)]
hot-air:
(48,21,36) [(1992,1029),(2005,1030),(2015,1034),(2018,1036)]
(104,65,36) [(3173,1890),(3163,1893)]
(169,89,62) [(4181,931),(4210,938),(4330,1046),(4171,1056),(3117,1814)]
(68,59,60) [(1872,220),(1874,220),(1878,220),(1696,225),(3785,429)]
(198,96,74) [(4352,1057)]
(136,43,53) [(1700,931)]
(82,42,32) [(4556,961),(4559,973),(4563,989),(4563,990),(4441,1004),(4387,1126),(4378,1128)]
(192,132,72) [(1399,900),(3105,1822),(3104,1824),(3105,1824),(3107,1826),(3107,1827),(3104,1839),(3119,1852)]
(146,21,63) [(1716,993)]
(125,64,36) [(4332,937)]
in-input:
(204,90,1) [(1526,1997),(1385,2145),(4780,2807),(4788,3414)]
(227,163,53) [(1467,1739),(2414,1925),(2441,2198),(134,2446)]
(196,179,135) [(3770,2740),(1110,3012),(3909,3216),(1409,3263),(571,3405)]
(208,59,27) [(1134,1980),(4518,2108),(4515,2142)]
(149,70,1) [(4499,1790),(2416,2042),(1338,2150),(3731,2408),(3722,2409),(4400,3618)]
(168,3,7) [(987,402),(951,432),(1790,1213),(1790,1214),(1848,1217),(4218,1840),(4344,1870),(1511,1898)]
(218,118,4) [(3857,1701),(1442,1980),(1411,2156),(25,2606)]
(127,153,4) [(3710,2813)]
(224,230,246) [(2086,160),(2761,222),(4482,1442)]
(213,127,66) [(4601,1860),(4515,2527),(4757,2863)]
klatschmohn:
(170,133,19) [(1202,2274),(1202,2275),(957,2493),(1034,2633),(3740,3389),(3740,3391),(3683,3439)]
(162,92,4) [(489,2854)]
(159,175,104) [(3095,2475),(3098,2481)]
(199,139,43) [(1956,3055)]
(171,169,170) [(3669,1487),(3674,1490),(3701,1507)]
(184,115,58) [(1958,2404)]
(228,169,5) [(1316,2336),(1317,2336)]
(179,165,43) [(3879,2380),(1842,2497),(1842,2498)]
(67,21,6) [(1959,2197),(2157,2317),(2158,2317),(2158,2318),(2116,2373)]
(213,100,106) [(1303,1816)]
tajinaste-rojo:
(243,56,99) [(1811,2876),(1668,4141),(2089,4518),(1981,4732),(1659,4778),(2221,5373),(1779,5598),(2210,5673),(2373,5860)]
(147,157,210) [(1835,1028),(1431,3358)]
(114,37,19) [(1792,3572),(1818,3592)]
(108,117,116) [(2772,4722),(1269,5672),(2512,5811),(2509,5830),(2186,5842),(2186,5846),(2190,5851),(2211,5884)]
(214,197,93) [(1653,4386)]
(163,102,101) [(2226,2832),(2213,3683),(1894,4091),(1875,4117)]
(192,192,164) [(2175,2962),(2206,3667),(2315,3858),(1561,3977),(3039,5037),(3201,5641)]
(92,118,45) [(1881,1704),(1983,1877),(2254,2126),(3753,5862),(3766,5883)]
(145,180,173) [(1826,1585)]
(181,124,105) [(1969,3892)]
turret-arch:
(116,70,36) [(384,648),(516,669)]
(121,115,119) [(2419,958)]
(183,222,237) [(172,601),(183,601),(110,611),(111,617)]
(237,136,82) [(2020,282),(676,383),(748,406),(854,482),(638,497),(647,661),(1069,838),(1809,895),(1823,911)]
(193,199,215) [(1567,919),(1793,1047)]
(33,30,25) [(1307,861),(309,885),(1995,895),(504,1232),(2417,1494)]
(17,23,39) [(1745,1033),(788,1090),(967,1250)]
(192,139,95) [(1445,1337)]
(176,125,98) [(1197,1030)]
(178,83,0) [(2378,1136)]
water-lilies:
(86,140,80) [(2322,2855),(4542,3005),(4540,3006),(4577,3019)]
(218,124,174) [(1910,2457)]
(191,77,50) [(2076,1588)]
(197,211,186) [(4402,1894)]
(236,199,181) [(2154,1836)]
(253,242,162) [(1653,1430)]
(114,111,92) [(1936,2499)]
(111,93,27) [(2301,2423),(2127,2592),(2137,2717),(2147,2717)]
(139,92,102) [(1284,2243),(1297,2258)]
(199,157,117) [(3096,993)]

2
Чи є відповідність у зображеннях, на яких ми будемо перевірені? (Чи можуть зображення бути шумовими) Якщо ні, то, безумовно, єдиним способом буде вибіркове вибіркове відтворення, доки не буде обраний правильний піксель?
Блакитний

2
@muddyfish зображення взято з реальними камерами реальних об'єктів, тому є оптимізацією можна знайти. Ваш алгоритм повинен безумовно орієнтуватися на зображення, тільки не на конкретні кольори, які я надаю.
Натан Меррілл

"читаючи якомога менше пікселів", як ви це визначаєте?
Девід

Через відмінності в бібліотеках та мовах я не можу визначити методи, які вважаються "доступними". Що конкретно ти думаєш?
Натан Меррілл

Чи має рішення видавати кількість перевірених пікселів?
трихоплакс

Відповіді:


5

Пітон, оцінка: 14,035,624

По-перше, ось код:

from heapq import heappush, heappop
from PIL import Image
import random

random.seed(1)


def dist(x, y):
    return sum([(x[i] - y[i]) ** 2 for i in range(3)])


def gradient_descent(image_name, c):
    im = Image.open(image_name + '.jpg').convert('RGB')
    L = im.load()
    sx, sy = im.size
    heap = []
    visited = set()
    count = 0
    points = []
    for i in range(0, sx, sx / 98):
        for j in range(0, sy, sy / 98):
            points.append((i, j))
    for x in points:
        heappush(heap, [dist(c, L[x[0], x[1]]), [x[0], x[1]]])
        visited.add((x[0], x[1]))

    while heap:
        if count % 10 == 0:
            x = random.random()
            if x < 0.5:
                n = heap.pop(random.randint(10, 100))
            else:
                n = heappop(heap)
        else:
            n = heappop(heap)
        x, y = n[1]
        c_color = L[x, y]
        count += 1

        if c_color == c:
            p = float(len(visited)) / (sx * sy) * 100
            print('count: {}, percent: {}, position: {}'.format(len(visited), p, (x, y)))
            return len(visited)

        newpoints = []
        newpoints.append((x + 1, y))
        newpoints.append((x - 1, y))
        newpoints.append((x, y + 1))
        newpoints.append((x, y - 1))
        newpoints.append((x + 1, y + 1))
        newpoints.append((x + 1, y - 1))
        newpoints.append((x - 1, y + 1))
        newpoints.append((x - 1, y - 1))

        for p in newpoints:
            if p not in visited:
                try:
                    d = dist(c, L[p[0], p[1]])
                    heappush(heap, [d, [p[0], p[1]]])
                    visited.add(p)
                except IndexError:
                    pass

і ось подарунок, який показує, як алгоритм вивчає пікселі:

Отже, ось що робить цей код: Змінна heap є пріоритетною чергою з (x, y)координат зображення, відсортована по евклидову відстані кольору при цьому координат цільового кольору. Він ініціалізується на 10200 балів, які рівномірно розподілені по всьому зображенню.

Ініціалізувавши купу, ми вискакуємо точку з мінімальною відстані до цільового кольору. Якщо колір у цій точці має відстань> 0, тобто якщо колір у цій точці НЕ є цільовим кольором, до нього додаємо 8 навколишніх точок heap. Щоб переконатися, що дана точка розглядається не один раз, ми підтримуємо змінну visited, яка представляє собою сукупність усіх досліджених досі пунктів.

Іноді, замість того, щоб безпосередньо брати крапку з мінімальною кольоровою дистанцією, ми випадково виберемо якусь іншу точку поблизу верхньої частини черги. Це не суворо потрібно, але в моєму тестуванні він відшаровує приблизно 1 000 000 пікселів від загальної оцінки. Як тільки знайдений цільовий колір, ми просто повернемо довжину visitedнабору.

Як і @Karl Napf, я ігнорував тестові випадки, коли вказаний колір не присутній на зображенні. Ви можете знайти програму драйверів для проходження всіх тестових випадків на сховищі GitHub, який я створив для цієї відповіді.

Ось результати кожного конкретного тестового випадку:

barn
color: (143, 91, 33), count: 20388 / 0.452483465755%, position: (612, 1131)
color: (53, 35, 59), count: 99606 / 2.21061742643%, position: (1999, 1260)
color: (72, 49, 59), count: 705215 / 15.6512716943%, position: (1405, 974)

daisy
color: (21, 57, 91), count: 37393 / 0.154770711039%, position: (1877, 2131)
color: (169, 160, 0), count: 10659 / 0.0441179100089%, position: (2124, 759)
color: (113, 123, 114), count: 674859 / 2.79326096545%, position: (1119, 1335)
color: (225, 226, 231), count: 15905 / 0.0658312560927%, position: (3256, 889)
color: (17, 62, 117), count: 15043 / 0.0622634131029%, position: (2514, 3874)
color: (226, 225, 204), count: 138610 / 0.573710808362%, position: (1978, 1179)
color: (119, 124, 146), count: 390486 / 1.61623287435%, position: (2357, 917)
color: (2, 63, 120), count: 10063 / 0.0416510487306%, position: (2324, 3882)
color: (200, 167, 113), count: 16393 / 0.06785110224%, position: (1453, 1759)

dandelion
color: (95, 37, 33), count: 10081 / 0.0686342592593%, position: (1625, 1724)
color: (27, 41, 50), count: 2014910 / 13.7180691721%, position: (1267, 126)
color: (58, 92, 129), count: 48181 / 0.328029684096%, position: (1905, 756)
color: (136, 159, 105), count: 10521 / 0.0716299019608%, position: (1416, 3467)
color: (152, 174, 63), count: 10027 / 0.0682666122004%, position: (2256, 2558)
color: (69, 95, 130), count: 201919 / 1.37472086057%, position: (2708, 2943)
color: (150, 171, 174), count: 29714 / 0.202301198257%, position: (1180, 2706)

gerbera
color: (180, 153, 40), count: 21904 / 0.0906612910062%, position: (4459, 1644)
color: (116, 112, 149), count: 14896 / 0.0616549758413%, position: (5884, 252)
color: (222, 176, 65), count: 76205 / 0.315414704215%, position: (4313, 2097)
color: (108, 129, 156), count: 12273 / 0.0507983027994%, position: (5302, 3734)
color: (125, 99, 48), count: 26968 / 0.111621333814%, position: (5054, 2013)
color: (170, 149, 32), count: 89591 / 0.370819746281%, position: (4478, 1647)
color: (156, 185, 203), count: 177373 / 0.734151989118%, position: (4096, 368)
color: (103, 67, 17), count: 11035 / 0.0456741849093%, position: (4844, 1790)

hot-air
color: (48, 21, 36), count: 49711 / 0.24902994992%, position: (1990, 1095)
color: (104, 65, 36), count: 9927 / 0.0497298447599%, position: (3191, 1846)
color: (68, 59, 60), count: 195418 / 0.978957066918%, position: (3948, 470)
color: (82, 42, 32), count: 12216 / 0.0611967143737%, position: (4559, 984)
color: (192, 132, 72), count: 116511 / 0.583668171938%, position: (3103, 1844)

in-input
color: (204, 90, 1), count: 44058 / 0.248299807393%, position: (4695, 2559)
color: (227, 163, 53), count: 12654 / 0.0713147615132%, position: (221, 2384)
color: (196, 179, 135), count: 181534 / 1.02307996812%, position: (1030, 3486)
color: (208, 59, 27), count: 9956 / 0.0561095120614%, position: (4518, 2108)
color: (149, 70, 1), count: 13698 / 0.0771984829467%, position: (3731, 2408)
color: (168, 3, 7), count: 19381 / 0.10922644167%, position: (942, 398)
color: (218, 118, 4), count: 36648 / 0.206538911011%, position: (25, 2606)
color: (224, 230, 246), count: 1076427 / 6.06647185011%, position: (4482, 1442)
color: (213, 127, 66), count: 62673 / 0.353209265712%, position: (4701, 2579)

klatschmohn
color: (170, 133, 19), count: 11535 / 0.0724321530189%, position: (1034, 2633)
color: (162, 92, 4), count: 103795 / 0.651763790429%, position: (489, 2854)
color: (159, 175, 104), count: 10239 / 0.0642941321856%, position: (3098, 2481)
color: (171, 169, 170), count: 10119 / 0.063540611738%, position: (3674, 1490)
color: (184, 115, 58), count: 22425 / 0.140814133632%, position: (1958, 2404)
color: (228, 169, 5), count: 10449 / 0.0656127929688%, position: (1316, 2336)
color: (179, 165, 43), count: 10285 / 0.0645829816905%, position: (1842, 2498)
color: (67, 21, 6), count: 10206 / 0.0640869140625%, position: (2116, 2373)
color: (213, 100, 106), count: 11712 / 0.073543595679%, position: (1303, 1816)

tajinaste-rojo
color: (243, 56, 99), count: 126561 / 0.5273375%, position: (2241, 5424)
color: (114, 37, 19), count: 11285 / 0.0470208333333%, position: (1818, 3583)
color: (108, 117, 116), count: 33855 / 0.1410625%, position: (1269, 5672)
color: (163, 102, 101), count: 1058090 / 4.40870833333%, position: (1546, 4867)
color: (192, 192, 164), count: 10118 / 0.0421583333333%, position: (1919, 3171)
color: (92, 118, 45), count: 13431 / 0.0559625%, position: (3766, 5883)
color: (145, 180, 173), count: 1207713 / 5.0321375%, position: (1863, 955)

turret-arch
color: (116, 70, 36), count: 145610 / 3.23161258822%, position: (96, 671)
color: (183, 222, 237), count: 11704 / 0.259754094722%, position: (140, 604)
color: (237, 136, 82), count: 60477 / 1.34220338231%, position: (1063, 993)
color: (193, 199, 215), count: 359671 / 7.98240046163%, position: (2259, 953)
color: (33, 30, 25), count: 148195 / 3.28898308846%, position: (1307, 861)
color: (17, 23, 39), count: 10601 / 0.235274535044%, position: (2080, 1097)
color: (192, 139, 95), count: 219732 / 4.87664787607%, position: (1127, 970)
color: (176, 125, 98), count: 2471787 / 54.8578942696%, position: (147, 734)

water-lilies
color: (86, 140, 80), count: 10371 / 0.0717376936238%, position: (4542, 3005)
color: (218, 124, 174), count: 25655 / 0.177459312498%, position: (1910, 2457)
color: (197, 211, 186), count: 1144341 / 7.91557073177%, position: (4402, 1894)
color: (253, 242, 162), count: 14174 / 0.0980435897622%, position: (1672, 1379)
color: (111, 93, 27), count: 10405 / 0.0719728764975%, position: (2147, 2717)
color: (199, 157, 117), count: 10053 / 0.0695380420403%, position: (3096, 993)

Total: 14035624

2
Це дійсно гарна відповідь. Гарний алгоритм теж.
niemiro

1
Цей найближчий сусід з кількома насінням чудовий! Я також розглядав можливість використання BFS над DFS з купою так само, як і ви, але квадратичний пошук занадто широкий.
Карл Напф

1

Пітон, оцінка: 396,250,646

  • Поки немає PNG-файлів для розбору і все ще є проблеми з тестовими вікнами, я все-таки вирішив запрограмувати.
  • Ті тестові шкали, у яких значення не присутнє на зображенні, були проігноровані (перевірено на традиційному лінійному пошуку, який мав оцінку 544,017,431 )
from PIL import Image

def dist(x,y):
 d = 0
 for i in range(3):
  d += (x[i]-y[i])**2
 return d

def mid(x,y):
 return (x+y)/2

class Finder:
 def __init__(self, image_name, c):
  self.image_name = image_name,
  self.c = c
  self.found = False
  self.position = None
  self.im = Image.open(image_name+".jpg").convert("RGB")
  self.L = self.im.load()
  self.visited = set()

 def quadsearch(self,x0,x1,y0,y1):
  if x0==x1 and y0==y1: return
  xm=mid(x0,x1)
  ym=mid(y0,y1)
  R = [
   (x0,xm,y0,ym),
   (xm,x1,y0,ym),
   (x0,xm,ym,y1),
   (xm,x1,ym,y1),
   ]
  P = [(mid(t[0],t[1]), mid(t[2],t[3])) for t in R]
  DR = []
  for i in range(len(P)):
   p = P[i]
   if p in self.visited: continue
   self.visited.add(p)
   u = self.L[p[0], p[1]]
   d = dist(u, self.c)
   if d == 0:
    self.found = True
    self.position = (p[0], p[1])
    return
   DR.append((d,R[i]))
  S = sorted(range(len(DR)), key=lambda k: DR[k][0])
  for i in S:
   if self.found == True: return
   r = DR[i][1]
   self.quadsearch(r[0], r[1], r[2], r[3])

 def start(self):
  sx,sy = self.im.size
  self.quadsearch(0,sx,0,sy)

 def result(self):
  if self.found:
   count = len(self.visited)
   sx,sy = self.im.size
   ratio = float(count)/(sx*sy)
   print len(self.visited), ratio, self.position, self.L[self.position[0], self.position[1]], "=", self.c
  else:
   print self.c, "not found"

if __name__ == "__main__":
 image_name="turret-arch"
 c=(116,70,36)
 F = Finder(image_name, c)
 F.start()
 F.result()

Це рекурсивний пошук у квадратичному розрізі. Іноді воно знаходить правильне значення в кілька відсотків, іноді понад 75%. Ось результати для всіх тестів:

pixels_visited, percentage, (position) (RGB at position) = (RGB searched)

tajinaste-rojo
1500765 0.062531875 (2329, 5146) (243, 56, 99) = (243, 56, 99)
(147, 157, 210) not found
335106 0.01396275 (2116, 5791) (114, 37, 19) = (114, 37, 19)
1770396 0.0737665 (1269, 5672) (108, 117, 116) = (108, 117, 116)
(214, 197, 93) not found
8086276 0.336928166667 (1546, 4867) (163, 102, 101) = (163, 102, 101)
12859 0.000535791666667 (1476, 4803) (192, 192, 164) = (192, 192, 164)
7505961 0.312748375 (3766, 5883) (92, 118, 45) = (92, 118, 45)
15057489 0.627395375 (1871, 1139) (145, 180, 173) = (145, 180, 173)
(181, 124, 105) not found
in-input
35754 0.00201500551852 (4695, 2559) (204, 90, 1) = (204, 90, 1)
5029615 0.283456451895 (10, 2680) (227, 163, 53) = (227, 163, 53)
6986547 0.393744217722 (1383, 3446) (196, 179, 135) = (196, 179, 135)
1608341 0.090642053775 (4518, 2108) (208, 59, 27) = (208, 59, 27)
581774 0.0327873194757 (3750, 2798) (149, 70, 1) = (149, 70, 1)
1302581 0.0734101891628 (4374, 1941) (168, 3, 7) = (168, 3, 7)
6134761 0.345739701008 (25, 2606) (218, 118, 4) = (218, 118, 4)
(127, 153, 4) not found
9760033 0.550050913352 (4482, 1442) (224, 230, 246) = (224, 230, 246)
212816 0.0119937745268 (4701, 2579) (213, 127, 66) = (213, 127, 66)
water-lilies
5649260 0.390767412093 (4577, 3019) (86, 140, 80) = (86, 140, 80)
12600699 0.871608412215 (1910, 2457) (218, 124, 174) = (218, 124, 174)
(191, 77, 50) not found
3390653 0.234536328318 (4402, 1894) (197, 211, 186) = (197, 211, 186)
(236, 199, 181) not found
7060220 0.488365537823 (1672, 1379) (253, 242, 162) = (253, 242, 162)
(114, 111, 92) not found
6852380 0.473988947097 (2147, 2717) (111, 93, 27) = (111, 93, 27)
(139, 92, 102) not found
14105709 0.975712111261 (3096, 993) (199, 157, 117) = (199, 157, 117)
dandelion
(55, 2, 46) not found
9094264 0.619162854031 (1637, 1721) (95, 37, 33) = (95, 37, 33)
2358912 0.16060130719 (1526, 3129) (27, 41, 50) = (27, 41, 50)
11729837 0.798600013617 (1905, 756) (58, 92, 129) = (58, 92, 129)
6697060 0.455954520697 (2246, 2685) (136, 159, 105) = (136, 159, 105)
6429635 0.437747480937 (2148, 2722) (152, 174, 63) = (152, 174, 63)
(78, 49, 19) not found
(217, 178, 205) not found
80727 0.00549611928105 (2481, 3133) (69, 95, 130) = (69, 95, 130)
239962 0.0163372821351 (2660, 917) (150, 171, 174) = (150, 171, 174)
turret-arch
210562 0.0467313240712 (725, 655) (116, 70, 36) = (116, 70, 36)
(121, 115, 119) not found
2548703 0.565649385237 (140, 604) (183, 222, 237) = (183, 222, 237)
150733 0.033453104887 (2165, 601) (237, 136, 82) = (237, 136, 82)
3458188 0.767497003862 (2259, 953) (193, 199, 215) = (193, 199, 215)
2430256 0.539361711572 (265, 1222) (33, 30, 25) = (33, 30, 25)
638995 0.141816103689 (1778, 1062) (17, 23, 39) = (17, 23, 39)
2506522 0.556287895601 (1127, 970) (192, 139, 95) = (192, 139, 95)
1344400 0.298370988504 (147, 734) (176, 125, 98) = (176, 125, 98)
(178, 83, 0) not found
hot-air
17474837 0.875411434688 (1992, 1029) (48, 21, 36) = (48, 21, 36)
1170064 0.0586149905099 (3191, 1846) (104, 65, 36) = (104, 65, 36)
(169, 89, 62) not found
11891624 0.595717352134 (3948, 470) (68, 59, 60) = (68, 59, 60)
(198, 96, 74) not found
(136, 43, 53) not found
12476811 0.625032612198 (4387, 1126) (82, 42, 32) = (82, 42, 32)
4757856 0.238347376116 (3105, 1822) (192, 132, 72) = (192, 132, 72)
(146, 21, 63) not found
(125, 64, 36) not found
daisy
5322196 0.220287235367 (2171, 2128) (21, 57, 91) = (21, 57, 91)
(201, 175, 140) not found
22414990 0.9277629343 (2124, 759) (169, 160, 0) = (169, 160, 0)
20887184 0.864526601043 (1119, 1335) (113, 123, 114) = (113, 123, 114)
595712 0.0246566923794 (2656, 1349) (225, 226, 231) = (225, 226, 231)
3397561 0.140626034757 (2514, 3874) (17, 62, 117) = (17, 62, 117)
201068 0.00832226281046 (1978, 1179) (226, 225, 204) = (226, 225, 204)
18693250 0.773719036752 (2357, 917) (119, 124, 146) = (119, 124, 146)
3091040 0.127939041706 (2165, 3881) (2, 63, 120) = (2, 63, 120)
3567932 0.147677739839 (1453, 1759) (200, 167, 113) = (200, 167, 113)
barn
314215 0.0697356740202 (784, 1065) (143, 91, 33) = (143, 91, 33)
2448863 0.543491277908 (1999, 1260) (53, 35, 59) = (53, 35, 59)
(20, 24, 27) not found
(167, 148, 176) not found
(137, 50, 7) not found
(116, 95, 94) not found
2042891 0.453391406631 (1345, 858) (72, 49, 59) = (72, 49, 59)
(211, 163, 175) not found
(30, 20, 0) not found
(88, 36, 23) not found
klatschmohn
3048249 0.191409829222 (3683, 3439) (170, 133, 19) = (170, 133, 19)
1057649 0.0664133456509 (489, 2854) (162, 92, 4) = (162, 92, 4)
2058022 0.129230138206 (3095, 2475) (159, 175, 104) = (159, 175, 104)
(199, 139, 43) not found
2060805 0.129404892156 (3674, 1490) (171, 169, 170) = (171, 169, 170)
7725501 0.485110247577 (1958, 2404) (184, 115, 58) = (184, 115, 58)
2986734 0.187547095028 (1316, 2336) (228, 169, 5) = (228, 169, 5)
497709 0.0312528257017 (3879, 2379) (179, 165, 43) = (179, 165, 43)
3996978 0.250983720944 (2157, 2318) (67, 21, 6) = (67, 21, 6)
3332106 0.209234167028 (1303, 1816) (213, 100, 106) = (213, 100, 106)
gerbera
(218, 186, 171) not found
9445576 0.390955128952 (4377, 1750) (180, 153, 40) = (180, 153, 40)
(201, 179, 119) not found
6140398 0.254152853347 (5742, 576) (116, 112, 149) = (116, 112, 149)
6500717 0.269066561215 (4233, 1541) (222, 176, 65) = (222, 176, 65)
13307056 0.550782905612 (5302, 3734) (108, 129, 156) = (108, 129, 156)
13808847 0.571552180573 (5058, 2023) (125, 99, 48) = (125, 99, 48)
9454870 0.391339810307 (4478, 1647) (170, 149, 32) = (170, 149, 32)
2733978 0.113160142012 (4096, 368) (156, 185, 203) = (156, 185, 203)
11848606 0.490417237301 (4844, 1790) (103, 67, 17) = (103, 67, 17)
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.