Сортуйте дільники числа за простим коефіцієнтом


23

З огляду на введення цілого числа ≥ 2, виведіть список його дільників, відсортованих за показниками за їх простими чинниками, у порядку зростання, впорядкуючи спочатку за найбільшим простим, потім за другим найбільшим тощо.

Як приклад візьмемо ціле число 72, що становить 2 3 3 2 . У ньому є дільники

1     3^0 · 2^0
2     3^0 · 2^1
3     3^1 · 2^0
4     3^0 · 2^2
6     3^1 · 2^1
8     3^0 · 2^3
9     3^2 · 2^0
12    3^1 · 2^2
18    3^2 · 2^1
24    3^1 · 2^3
36    3^2 · 2^2
72    3^2 · 2^3

Коли їх сортують у порядку зростання за показниками по простим факторам, при цьому пріоритетніші мають більші прайси, це стає

1     3^0 · 2^0
2     3^0 · 2^1
4     3^0 · 2^2
8     3^0 · 2^3
3     3^1 · 2^0
6     3^1 · 2^1
12    3^1 · 2^2
24    3^1 · 2^3
9     3^2 · 2^0
18    3^2 · 2^1
36    3^2 · 2^2
72    3^2 · 2^3

Зауважте, що список сортується спочатку за порядком показника 3, а потім за показником 2. Ви також можете вважати це читанням зліва направо і зверху вниз по наступній сітці:

        2^0  2^1  2^2  2^3

3^0     1    2    4    8
3^1     3    6    12   24
3^2     9    18   36   72

Тестові приклади:

2 => 1 2
72 => 1 2 4 8 3 6 12 24 9 18 36 72
101 => 1 101
360 => 1 2 4 8 3 6 12 24 9 18 36 72 5 10 20 40 15 30 60 120 45 90 180 360
3780 => 1 2 4 3 6 12 9 18 36 27 54 108 5 10 20 15 30 60 45 90 180 135 270 540 7 14 28 21 42 84 63 126 252 189 378 756 35 70 140 105 210 420 315 630 1260 945 1890 3780
30030 => 1 2 3 6 5 10 15 30 7 14 21 42 35 70 105 210 11 22 33 66 55 110 165 330 77 154 231 462 385 770 1155 2310 13 26 39 78 65 130 195 390 91 182 273 546 455 910 1365 2730 143 286 429 858 715 1430 2145 4290 1001 2002 3003 6006 5005 10010 15015 30030
65536 => 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
74088 => 1 2 4 8 3 6 12 24 9 18 36 72 27 54 108 216 7 14 28 56 21 42 84 168 63 126 252 504 189 378 756 1512 49 98 196 392 147 294 588 1176 441 882 1764 3528 1323 2646 5292 10584 343 686 1372 2744 1029 2058 4116 8232 3087 6174 12348 24696 9261 18522 37044 74088

Оскільки це , виграє найкоротший код у байтах.

Відповіді:



8

Желе , 8 7 байт

ÆDÆfU$Þ

Спробуйте в Інтернеті! Завдяки @Dennis за -1 байт.

ÆD         Array of divisors, e.g. 24 -> [1, 2, 4, 8, 3, 6, 12, 24]
      Þ    Sort by...
     $       Combine previous two links...
  Æf           Factorise each, e.g. ['', [2], [3], [2, 2], [2, 3], [2, 2, 2],
                   [2, 2, 3], [2, 2, 2, 3]]
    U          Upend/reverse each sublist

2
ÆDÆfU$Þ(за допомогою нового сортування від Jelly), зберігає байт.
Денніс

7

Pyth, 10 байт

+1{*Mt_DyP

Спробуйте в Інтернеті: Демонстрація

На жаль, продукт у порожньому списку не визначений як 1 у Pyth. Це коштує три зайвих байти.

Пояснення:

+1{*Mt_DyPQ   implicit Q (=input number) at the end
         PQ   prime factorization of input
        y     powerset
      _D      order by reversed subsets
     t        remove the empy subset
   *M         compute the product of each subsets
  {           remove duplicates
+1            prepend 1

7

Желе , 12 10 байт

2 байти завдяки @ Sp3000.

ÆE'ḶUṚŒpUṚÆẸ
ÆEU'ḶŒpUÆẸ

Спробуйте в Інтернеті!

Тестовий набір.

ÆE            Array of exponents, e.g. 24 -> [3, 1] since 24 = 2^3*3^1
  U           Upend/reverse, e.g. [1, 3]
   ‘Ḷ         Range of each, from 0, e.g. [[0, 1], [0, 1, 2, 3]]
     Œp       Cartesian product, e.g. [[0, 0], [0, 1], ..., [1, 3]]
       U      Upend, reversing the innermost lists
        ÆẸ    Inverse of ÆE, converting exponents back into a number

Кредити @ Sp3000 за придуманий формат пояснення.


7

Python 2, 85 байт

n=input()
p,=L=[1]
while~-n:
 l=L;p+=1
 while n%p<1:L=l+[x*p for x in L];n/=p
print L

Ні факторизації, ні сортування. Рекурсивна реалізація однакової тривалості:

f=lambda n,p=2:1/n*[1]or n%p and f(n,p+1)or[x*c for x in f(n/p)for c in[1,p][x%p<1:]]

5

Власне, 19 байт

;÷#o♂w♂RS`"iⁿ"£Mπ`M

Спробуйте в Інтернеті!

Пояснення:

;÷#o♂w♂RS`"iⁿ"£Mπ`M
;                    duplicate input
 ÷                   divisors
  #o                 include input in divisors list (note to self: fix this bug)
    ♂w               factor each integer into a list of [prime, exponent] pairs
      ♂R             reverse each list, so that the largest prime comes first
        S            sort the list
         `"iⁿ"£Mπ`M  for each factorization:
          "iⁿ"£M       for each [prime, exponent] pair:
           iⁿ            push prime**exponent
                π      product

5

JavaScript, 78 байт

f=(n,p=2,a=[1],b=a)=>n<2?a:n%p?f(n,p+1,a):f(n/p,p,a.concat(b=b.map(m=>m*p)),b)

На основі ідеї @ xnor, хоча я не зрозумів його код, тому мені довелося повторно реалізувати його з нуля. Основний алгоритм полягає в тому, що ви починаєте з [1] і множите на [1, ..., pᵏ] для кожного pᵏ в основній факторизації n, хоча, оскільки я не маю основної факторизації або декартового продукту, я повинен це робити все рекурсивно. Приклад:

n=72 p=2 a=[1] b=[1]
n=36 p=2 a=[1,2] b=[2]
n=18 p=2 a=[1,2,4] b=[4]
 n=9 p=2 a=[1,2,4,8] b=[8]
 n=9 p=3 a=[1,2,4,8] b=[1,2,4,8]
 n=3 p=3 a=[1,2,4,8,3,6,12,24] b=[3,6,12,24]
 n=1 p=3 a=[1,2,4,8,3,6,12,24,9,18,36,72] b=[9,18,36,72]

Згадав лише, коли ти був у 10к .. зараз майже в 14к. Так тримати !!
NiCk Newman

2

R, 196 байт

n=scan()
if(n<4)c(1,n)else{
r=2:n
d=NULL
while(n>1){i=r[min(which(n%%r==0))];d=c(d,i);n=n/i}
m=unique(d)
b=table(d)
l=list()
for(i in 1:length(m))l[[i]]=m[i]^(0:b[i])
apply(expand.grid(l),1,prod)}

Це буде неефективно, як чорт, тому що я навряд чи втримався від спокуси використання library(primes). Він створює вектор dусіх простих факторів вхідних даних, обчислює їх частоту (кількість випадків), а потім обчислює декартовий добуток усіх можливих потужностей (від 0 до відповідної частоти b[i]), до якого застосовується prodфункція. Дано, особливі випадки 2 і 3! В іншому випадку це чудова демонстрація обробки R рамки даних та векторних функцій / по рядкових операціях (і навіть суто статистична tableфункція!).

Звичайно, його ефективність може бути підвищена за рахунок 15 байт r=2:ceiling(sqrt(n)), якщо хтось дбає. Ось приємніша версія без вогонь:

factorise <- function(n){
  if (n<4) c(1,n) else { # Now that all special cases have been handled
    r=2:ceiling(sqrt(n)) # We check all divisors smaller than the square root
    d=NULL # Initiate the variable for divisors
    while (n>1) {
      i=r[min(which(n%%r==0))] # Check the first divisor with a zero remainder
      d=c(d,i) # Append it to the list of divisors
      n=n/i   # Divide by it and check again
    }
    m=unique(d) # Get unique divisors, and they are already sorted
    b=table(d) # Count their frequencies
    l=list() # Initiate a list of all possible powers of unique factors
    for(i in 1:length(m)) l[[i]]=m[i]^(0:b[i]) # Calculate powers
    apply(expand.grid(l),1,prod) # Make a cartesian dataframe and row-multiply
  }
}

2

Математика 150 байт

f[t_]:=Thread@{#,IntegerExponent[t,#]&/@#}&@Prime@Range@PrimePi@Max@FactorInteger[t][[All,1]];Times@@@(#^#2&@@@#&/@Sort[Reverse/@(f@#&/@Divisors@#)])&

2

Брахілог , 3 байти

fḋᵒ

Спробуйте в Інтернеті!

Код читається більш-менш так само, як і назва виклику: "фактори введення, відсортовані за їх простими розкладами". Переконайтесь, що ця 3-байтна красуня фактично пройшла тестові випадки, використовуючи лише вбудований Брахілог сенс того, як сортувати списки, і в кінцевому підсумку вимагає від мене скопіювати та вставити всі ті численні числа в REPL Clojure, де елементи списку розділені пробілом та коми - це пробіли, але виявилося, що це дійсно працює.


2

APL (Dyalog Extended) , 17 байт

Велике спасибі ngn та Adám за допомогу в гольфі в обох цих програмах APL в Orchard APL , чудове місце для вивчення APL та отримання довідки APL.

∊×⍀/⌽{⊂×\1,⍵}⌸⍨⍭⎕

Спробуйте в Інтернеті!

Ungolfing

∊×⍀/⌽{⊂×\1,⍵}⌸⍨⍭⎕

                  Gets evaluated input from stdin.
                  Gives us a list of the prime factors of our input.
                   Example for 720: 2 2 2 2 3 3 5
     {      }⌸⍨     groups our prime factors by the keys in the left argument,
                   and  passes the prime factors as both arguments,
                   grouping all the identical primes together
                   before running a {} dfn on them
      ⊂×\1,⍵       We append 1 to each group, get a list of powers of each prime,
                   and enclose the groups to remove 0s from uneven rows.
                 This reverses the prime power groups.
 ×⍀/              This multiplies all the powers together into
                   a matrix of the divisors of our input.
                   (Same as ∘.×/ in Dyalog Unicode)
                  And this turns the matrix into 
                   a list of divisors sorted by prime factorization.
                   We print implicitly, and we're done.

APL (Dyalog Unicode) , 29 байт SBCS

{∊∘.×/⌽{⊂×\1,⍵}⌸⍨¯2÷/∪∧\⍵∨⍳⍵}

Спробуйте в Інтернеті!

Ungolfing

{∊∘.×/⌽{⊂×\1,⍵}⌸⍨¯2÷/∪∧\⍵∨⍳⍵}

{                           }  A dfn, a function in brackets.
                        ⍵∨⍳⍵   We take the GCD of our input with 
                               all the numbers in range(1, input).
                     ∪∧\       This returns all the unique LCMs of
                               every prefix of our list of GCDs.
                               Example for 72: 1 2 6 12 24 72.
                 ¯2÷/          We divide pairwise (and in reverse)
                               by using a filter window of negative two 2).
                               Example for 72: 2 3 2 2 3, our prime factors.
       {      }⌸⍨               groups our prime factors by the keys in the left argument,
                               and  passes the prime factors as both arguments,
                               grouping all the identical primes together
                               before running a {} dfn on them
           1,⍵                 We append 1 to each group.
        ⊂×\                    Then we get a list of powers of each prime,
                               and enclose the groups to remove 0s from uneven rows.
                              This reverses the prime power groups.
  ∘.×/                         This multiplies all the powers together into 
                               a matrix of the divisors of our input.
                              And this turns the matrix into a list of divisors
                               sorted by prime factorization.
                               We return implicitly, and we're done.

1

J, 32 31 байт

[:(*/@#~>:#:[:i.[:*/>:)&|./2&p:

Захоплює списки простих чи складових вхідних цілих чисел, перевертає кожен і створює з цього дільники.

Використання

   f =: [:(*/@#~>:#:[:i.[:*/>:)&|./2&p:
   f 2
1 2
   f 72
1 2 4 8 3 6 12 24 9 18 36 72
   f 101
1 101

Пояснення

[:(*/@#~>:#:[:i.[:*/>:)&|./2&p:  Input: n
                           2&p:  Factor n as a list where the first row are the primes
                                 and the second are their exponents
[:                     &|./      Reverse each list
                    >:           Increment each exponent by 1
                [:*/             Reduce it using multiplication
            [:i.                 Construct a range from 0 to that product exclusive
        >:                       The list of each exponent incremented
          #:                     Reduce each number in the previous range as a mixed base
                                 using the incremented exponents
      #~                         For each mixed base value in that range, copy from
                                 the list of primes that many times
   */@                           Reduce the copied primes using multiplication
                                 Return this list of products as the result

1

Рубін, 71 байт

Ця відповідь ґрунтується на відповіді xnor Python 2.

->n{a,=t=[1];(s=t;a+=1;(t=s+t.map{|z|z*a};n/=a)while n%a<1)while n>1;t}

Альтернативою такої ж довжини є:

->n{a,=t=[1];(a+=1;(t+=t.map{|z|z*a};n/=a)while n%a<1)while n>1;t.uniq}

Ungolfing:

def f(num)
  factor = 1
  list = [1]
  while num != 1
    s = list
    factor += 1
    while num % factor == 0
      list = s + list.map{|z| z*factor}
      num /= factor
    end
  end
  return list
end

def g(num)
  factor = 1
  list = [1]
  while num != 1
    factor += 1
    while num % factor == 0
      list += list.map{|z| z*factor}
      num /= factor
    end
  end
  return list.uniq
end



Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.