Створіть функцію або програму, яка займає два входи:
- Список цілих чисел, які мають бути відсортовані (менше 20 елементів)
- Позитивне ціле число,
N
кажучи, скільки порівнянь ви повинні провести
Функція зупиняється та виводить отриманий список цілих чисел після N
порівнянь. Якщо список буде повністю відсортований перед N
порівнянням, то відсортований список повинен бути виведений.
Алгоритм сортування бульбашок добре відомий, і, мабуть, це знає більшість людей. Наступний псевдокод та анімація (обидві із пов'язаної статті Вікіпедії) повинні містити необхідні деталі:
procedure bubbleSort( A : list of sortable items )
n = length(A)
repeat
swapped = false
for i = 1 to n-1 inclusive do
/* if this pair is out of order */
if A[i-1] > A[i] then
/* swap them and remember something changed */
swap( A[i-1], A[i] )
swapped = true
end if
end for
until not swapped
end procedure
Анімація нижче показує прогрес:
Приклад (взятий безпосередньо із пов'язаної статті Вікіпедії) показує кроки при сортуванні списку ( 5 1 4 2 8 )
:
Перший прохід
1: ( 5 1 4 2 8 ) -> ( 1 5 4 2 8 ) // Here, algorithm compares the first two elements,
// and swaps since 5 > 1.
2: ( 1 5 4 2 8 ) -> ( 1 4 5 2 8 ) // Swap since 5 > 4
3: ( 1 4 5 2 8 ) -> ( 1 4 2 5 8 ) // Swap since 5 > 2
4: ( 1 4 2 5 8 ) -> ( 1 4 2 5 8 ) // Now, since these elements are already in order
// (8 > 5), algorithm does not swap them.
Другий прохід
5: ( 1 4 2 5 8 ) -> ( 1 4 2 5 8 )
6: ( 1 4 2 5 8 ) -> ( 1 2 4 5 8 ) // Swap since 4 > 2
7: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
8: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
Тепер масив вже відсортований, але алгоритм не знає, чи він завершений. Алгоритму потрібно один цілий прохід без будь-якого підкачування, щоб знати, що він відсортований.
Третій перевал
9: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
10:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
11:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
12:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
Тестові приклади:
Формат: Number of comparisons (N): List after N comparisons
Input list:
5 1 4 2 8
Test cases:
1: 1 5 4 2 8
2: 1 4 5 2 8
3: 1 4 2 5 8
4: 1 4 2 5 8
5: 1 4 2 5 8
6: 1 2 4 5 8
10: 1 2 4 5 8
14: 1 2 4 5 8
Input list:
0: 15 18 -6 18 9 -7 -1 7 19 19 -5 20 19 5 15 -5 3 18 14 19
Test cases:
1: 15 18 -6 18 9 -7 -1 7 19 19 -5 20 19 5 15 -5 3 18 14 19
21: -6 15 18 9 -7 -1 7 18 19 -5 19 19 5 15 -5 3 18 14 19 20
41: -6 9 -7 15 -1 7 18 18 -5 19 19 5 15 -5 3 18 14 19 19 20
60: -6 -7 -1 9 7 15 18 -5 18 19 5 15 -5 3 18 14 19 19 19 20
61: -6 -7 -1 7 9 15 18 -5 18 19 5 15 -5 3 18 14 19 19 19 20
81: -7 -6 -1 7 9 15 -5 18 18 5 15 -5 3 18 14 19 19 19 19 20
119: -7 -6 -1 -5 7 9 15 5 15 -5 3 18 14 18 18 19 19 19 19 20
120: -7 -6 -1 -5 7 9 15 5 15 -5 3 18 14 18 18 19 19 19 19 20
121: -7 -6 -1 -5 7 9 5 15 15 -5 3 18 14 18 18 19 19 19 19 20
122: -7 -6 -1 -5 7 9 5 15 15 -5 3 18 14 18 18 19 19 19 19 20
123: -7 -6 -1 -5 7 9 5 15 -5 15 3 18 14 18 18 19 19 19 19 20
201: -7 -6 -5 -1 -5 3 5 7 9 14 15 15 18 18 18 19 19 19 19 20
221: -7 -6 -5 -5 -1 3 5 7 9 14 15 15 18 18 18 19 19 19 19 20
- Так, дозволені вбудовані алгоритми сортування Bubble.
- Ні, ви не можете вважати лише додатні цілі чи унікальні цілі числа.
- Сортування повинно проводитись у порядку, описаному вище. Не можна починати в кінці списку