Ітерації Бейлі – Борвейна – Плоуфа


16

Ітерації Бейлі – Борвейна – Плоуфа

Ми бачили кілька пі-проблем на PPCG, але жоден, який конкретно диктує алгоритм, який ви повинні використовувати. Я хотів би побачити реалізацію алгоритму Бейлі-Борвейна – Плоуфа будь-якою мовою, аж до ітерації n. Формула така:

Змінена формула.

Ваш алгоритм повинен виводити кожну ітерацію до n, показуючи проміжні суми, а також кінцевий результат, щоб сформувати "піанг". Ви також можете скористатися скороченою поліноміальною формою алгоритму, показаним на сторінці вікіпедії. Приклад запуску n=50показаний нижче:

3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846
3.141592653589793238462
3.1415926535897932384626
3.14159265358979323846264
3.141592653589793238462643
3.1415926535897932384626433
3.14159265358979323846264338
3.141592653589793238462643383
3.1415926535897932384626433832
3.14159265358979323846264338327
3.141592653589793238462643383279
3.1415926535897932384626433832795
3.14159265358979323846264338327950
3.141592653589793238462643383279502
3.1415926535897932384626433832795028
3.14159265358979323846264338327950288
3.141592653589793238462643383279502884
3.1415926535897932384626433832795028841
3.14159265358979323846264338327950288419
3.141592653589793238462643383279502884197
3.1415926535897932384626433832795028841971
3.14159265358979323846264338327950288419716
3.141592653589793238462643383279502884197169
3.1415926535897932384626433832795028841971693
3.14159265358979323846264338327950288419716939
3.141592653589793238462643383279502884197169399
3.1415926535897932384626433832795028841971693993
3.14159265358979323846264338327950288419716939937
3.141592653589793238462643383279502884197169399375
3.1415926535897932384626433832795028841971693993751
3.14159265358979323846264338327950288419716939937510

Точність кожної ітерації повинна дорівнювати тому, nщо передається алгоритму, тобто кожна ітерація повинна обчислювати pi до пройденого nдля всіх k.

Правила:

  • Вбудовані модулі заборонені, як ні pi, ви повинні використовувати формулу.
  • Ви повинні підтримувати nмаксимум, який дозволяє ваша мова з точки зору обчислення 16^n. Якщо введення викликає арифметичне переповнення під час обчислення після x<nвиконання, оскільки ваша мова підтримує лише десяткові знаки до 2^32-1, це добре. Будь-які інші припущення щодо nцього не дуже.
  • Ви ОБОВ'ЯЗКОВО надасте пояснення того, як ви отримали вихід, якщо це не очевидно. Наприклад, якщо ви публікуєте мову для гольфу, потрібна розбивка на 100%. Це потрібно для того, щоб ви використовували вказаний алгоритм.
  • Стандартні отвори в петлі заборонені.
  • Це код-гольф, тут виграють найнижчі виграші байтів.

Довідковий код (код, який використовується для створення прикладу):

public static void main(String[] args) {
    (0..50).each {
        n->
        def x=(0..n).collect {
            j->
            def k=new BigDecimal(j)
            def s={it.setScale(n)}
            def a=s(1.0g).divide(s(16.0g)**s(k))
            def b=s(4.0g)/(s(8.0g)*s(k)+s(1.0g))
            def c=s(2.0g)/(s(8.0g)*s(k)+s(4.0g))
            def d=s(1.0g)/(s(8.0g)*s(k)+s(5.0g))
            def e=s(1.0g)/(s(8.0g)*s(k)+s(6.0g))
            def f=a*(b-c-d-e)
        }.sum()
        println(n + "\t" + x.setScale(n, BigDecimal.ROUND_DOWN))
    }
}

Ця реалізація обмежується на n=255, ви можете обмежувати менше або більше.
Ця реалізація була зроблена в Groovy.


5
Єдиний недолік, який я бачу, це те, що буде складно перевірити, яким саме методом хтось використовує солей на основі результатів, що, як правило, є проблемою Calculate foo via x method.
DJMcMayhem

@DJMcMayhem Додано пояснення коду, який ви публікуєте, якщо це не очевидна реалізація, щоб переконатися, що ми можемо сказати, що вони зробили. Але алгоритм насправді досить простий, тому він не повинен бути занадто поганим.
Чарівний урвищ урна

2
Що стосується коментаря @ DJMcMayhem, див. Пораду, щоб уникнути невідповідних вимог програми .
Пітер Тейлор

2
Ви повинні підтримувати n до максимуму, який дозволяє ваша мова. Дозволяє як? Чи можу я використовувати рекурсію? Чи можу я використовувати списки, якщо генератори будуть більш сприятливими для пам'яті? Чи можу я використовувати 2n цифр і рубати останні n off?
Денніс

1
З метою ясності я просто видаляю порядки перед тим висновком, який насправді потрібен.
Денніс

Відповіді:


8

05AB1E , 63 52 50 байт

Формула спеціалізації

΃0NU62201122vy͹̰*8X*N>+÷+}16Xm÷+DX>£X__iÀ'.ìÁ},

Спробуйте в Інтернеті!

Формула BBP

ƒ4¹>°UX*8N*©>÷YX*®4+÷-1X*®5+÷-1X*®6+÷-1X*16Nm÷*ODN>£N__iÀ'.ìÁ},

Спробуйте в Інтернеті!


1
"Ваш алгоритм повинен виводити кожну ітерацію до n, показуючи проміжні суми, а також кінцевий результат, щоб сформувати" піангл "."
Magic Octopus Urn

1
@carusocomputing: Можливо, змінити формулювання щодо Виведення поточної ітерації n необов’язково, оскільки я зрозумів, що необхідний лише кінцевий результат.
Емінья

А може, це я просто погано читаю (я знаю, що я схильний пропускати частини, коли відчуваю, що у мене є суть)
Emigna

4
Можливо, лише ми , але точно не тільки ти .
Денніс

@carusocomputing: Ітерації додані. Потрібно знайти більш дешевий спосіб зробити це як "". було дуже дорого.
Емінья

5

Python 2, 109 108 байт

def f(n):k=1;s=0;t=100**n;exec-~n*'s+=4*t/k-2*t/(k+3)-t/(k+4)-t/(k+5)>>k/2;print"3."[:k]+`s`[1:k/8+1];k+=8;'

Перевірте це на Ideone .


3

Пітон 2, 174 байт

Людина, це час, коли я хотів би, щоб у Python був якийсь простіший спосіб зберегти нескінченну точність десятків. Можливо, реалізація власного типу нескінченної точності для цього виклику коротша, але я не можу уявити, як. Формула написана дослівно.

from decimal import*
n=input();d=Decimal;getcontext().prec=n+2;p=d(0)
for i in range(n+1):f=8.*i;p+=d(16**(-i))*(4/d(f+1)-2/d(f+4)-1/d(f+5)-1/d(f+6));print str(p)[:-~i+(i>0)]

Приклад виводу для n=100(з деякими доданими номерами рядків):

3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846
3.141592653589793238462
3.1415926535897932384626
3.14159265358979323846264
3.141592653589793238462643
3.1415926535897932384626433
3.14159265358979323846264338
3.141592653589793238462643383
3.1415926535897932384626433832
3.14159265358979323846264338327
3.141592653589793238462643383279
3.1415926535897932384626433832795
3.14159265358979323846264338327950
3.141592653589793238462643383279502
3.1415926535897932384626433832795028
3.14159265358979323846264338327950288
3.141592653589793238462643383279502884
3.1415926535897932384626433832795028841
3.14159265358979323846264338327950288419
3.141592653589793238462643383279502884197
3.1415926535897932384626433832795028841971
3.14159265358979323846264338327950288419716
3.141592653589793238462643383279502884197169
3.1415926535897932384626433832795028841971693
3.14159265358979323846264338327950288419716939
3.141592653589793238462643383279502884197169399
3.1415926535897932384626433832795028841971693993
3.14159265358979323846264338327950288419716939937
3.141592653589793238462643383279502884197169399375
3.1415926535897932384626433832795028841971693993751
3.14159265358979323846264338327950288419716939937510
3.141592653589793238462643383279502884197169399375105
3.1415926535897932384626433832795028841971693993751058
3.14159265358979323846264338327950288419716939937510582
3.141592653589793238462643383279502884197169399375105820
3.1415926535897932384626433832795028841971693993751058209
3.14159265358979323846264338327950288419716939937510582097
3.141592653589793238462643383279502884197169399375105820974
3.1415926535897932384626433832795028841971693993751058209749
3.14159265358979323846264338327950288419716939937510582097494
3.141592653589793238462643383279502884197169399375105820974944
3.1415926535897932384626433832795028841971693993751058209749445
3.14159265358979323846264338327950288419716939937510582097494459
3.141592653589793238462643383279502884197169399375105820974944592
3.1415926535897932384626433832795028841971693993751058209749445923
3.14159265358979323846264338327950288419716939937510582097494459230
3.141592653589793238462643383279502884197169399375105820974944592307
3.1415926535897932384626433832795028841971693993751058209749445923078
3.14159265358979323846264338327950288419716939937510582097494459230781
3.141592653589793238462643383279502884197169399375105820974944592307816
3.1415926535897932384626433832795028841971693993751058209749445923078164
3.14159265358979323846264338327950288419716939937510582097494459230781640
3.141592653589793238462643383279502884197169399375105820974944592307816406
3.1415926535897932384626433832795028841971693993751058209749445923078164062
3.14159265358979323846264338327950288419716939937510582097494459230781640628
3.141592653589793238462643383279502884197169399375105820974944592307816406286
3.1415926535897932384626433832795028841971693993751058209749445923078164062862
3.14159265358979323846264338327950288419716939937510582097494459230781640628620
3.141592653589793238462643383279502884197169399375105820974944592307816406286208
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

Це, здається, працює для більшої кількості, n=1000працює за пару секунд і n=10000, здається, ще не дало мені жодних помилок!


3

Haskell, 101 100 байт

Завдяки @nimi за байт.

f n=take(n+2).show$sum[1/16^k*(4/(l+1)-2/(l+4)-1/(l+5)-1/(l+6))|k<-[0..100+n],l<-[8*fromIntegral k]]

Безпосередня реалізація. Обчислює nдо 15 цифр (стандарт подвійної точності).


l<-[8*fromIntegral k]замість let ...збереження байта.
німі

3

J, 73 64 62 байт

(j.":"+10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8)@i.@>:

Це виводить кожне наближення до n цифр як відформатований рядок. Це використовує поліноміальне спрощення формули і отримує перші n цифр шляхом множення суми на потужність 10, перекриття її та ділення на цю ж потужність 10.

Вхід приймається як розширене ціле число, тобто раціональні засоби використовуються при поділі, що забезпечує точні результати.

Використання

Це вихід для n = 100, показуючи сукупні суми для k в [0, 100].

   f =: (j.":"+10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8)@i.@>:
   f 100x
3                                                                                                     
3.1                                                                                                   
3.14                                                                                                  
3.141                                                                                                 
3.1415                                                                                                
3.14159                                                                                               
3.141592                                                                                              
3.1415926                                                                                             
3.14159265                                                                                            
3.141592653                                                                                           
3.1415926535                                                                                          
3.14159265358                                                                                         
3.141592653589                                                                                        
3.1415926535897                                                                                       
3.14159265358979                                                                                      
3.141592653589793                                                                                     
3.1415926535897932                                                                                    
3.14159265358979323                                                                                   
3.141592653589793238                                                                                  
3.1415926535897932384                                                                                 
3.14159265358979323846                                                                                
3.141592653589793238462                                                                               
3.1415926535897932384626                                                                              
3.14159265358979323846264                                                                             
3.141592653589793238462643                                                                            
3.1415926535897932384626433                                                                           
3.14159265358979323846264338                                                                          
3.141592653589793238462643383                                                                         
3.1415926535897932384626433832                                                                        
3.14159265358979323846264338327                                                                       
3.141592653589793238462643383279                                                                      
3.1415926535897932384626433832795                                                                     
3.14159265358979323846264338327950                                                                    
3.141592653589793238462643383279502                                                                   
3.1415926535897932384626433832795028                                                                  
3.14159265358979323846264338327950288                                                                 
3.141592653589793238462643383279502884                                                                
3.1415926535897932384626433832795028841                                                               
3.14159265358979323846264338327950288419                                                              
3.141592653589793238462643383279502884197                                                             
3.1415926535897932384626433832795028841971                                                            
3.14159265358979323846264338327950288419716                                                           
3.141592653589793238462643383279502884197169                                                          
3.1415926535897932384626433832795028841971693                                                         
3.14159265358979323846264338327950288419716939                                                        
3.141592653589793238462643383279502884197169399                                                       
3.1415926535897932384626433832795028841971693993                                                      
3.14159265358979323846264338327950288419716939937                                                     
3.141592653589793238462643383279502884197169399375                                                    
3.1415926535897932384626433832795028841971693993751                                                   
3.14159265358979323846264338327950288419716939937510                                                  
3.141592653589793238462643383279502884197169399375105                                                 
3.1415926535897932384626433832795028841971693993751058                                                
3.14159265358979323846264338327950288419716939937510582                                               
3.141592653589793238462643383279502884197169399375105820                                              
3.1415926535897932384626433832795028841971693993751058209                                             
3.14159265358979323846264338327950288419716939937510582097                                            
3.141592653589793238462643383279502884197169399375105820974                                           
3.1415926535897932384626433832795028841971693993751058209749                                          
3.14159265358979323846264338327950288419716939937510582097494                                         
3.141592653589793238462643383279502884197169399375105820974944                                        
3.1415926535897932384626433832795028841971693993751058209749445                                       
3.14159265358979323846264338327950288419716939937510582097494459                                      
3.141592653589793238462643383279502884197169399375105820974944592                                     
3.1415926535897932384626433832795028841971693993751058209749445923                                    
3.14159265358979323846264338327950288419716939937510582097494459230                                   
3.141592653589793238462643383279502884197169399375105820974944592307                                  
3.1415926535897932384626433832795028841971693993751058209749445923078                                 
3.14159265358979323846264338327950288419716939937510582097494459230781                                
3.141592653589793238462643383279502884197169399375105820974944592307816                               
3.1415926535897932384626433832795028841971693993751058209749445923078164                              
3.14159265358979323846264338327950288419716939937510582097494459230781640                             
3.141592653589793238462643383279502884197169399375105820974944592307816406                            
3.1415926535897932384626433832795028841971693993751058209749445923078164062                           
3.14159265358979323846264338327950288419716939937510582097494459230781640628                          
3.141592653589793238462643383279502884197169399375105820974944592307816406286                         
3.1415926535897932384626433832795028841971693993751058209749445923078164062862                        
3.14159265358979323846264338327950288419716939937510582097494459230781640628620                       
3.141592653589793238462643383279502884197169399375105820974944592307816406286208                      
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089                     
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899                    
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998                   
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986                  
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862                 
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628                
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280               
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803              
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034             
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348            
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482           
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825          
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253         
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534        
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342       
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421      
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211     
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117    
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170   
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706  
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067 
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

Пояснення

Спочатку складіть діапазон [0, n ], показаний для n = 5

   i. >: 5
0 1 2 3 4 5

Помножте кожен на 8

   (*&8) i. >: 5
0 8 16 24 32 40

Сформуйте таблицю додавання між [1, 4, 5, 6]продуктами і 8

   (1 4 5 6+/*&8) i. >: 5
1  9 17 25 33 41
4 12 20 28 36 44
5 13 21 29 37 45
6 14 22 30 38 46

Розділіть кожен ряд на [4, 2, -1, 1]

   (4 2 _1 1%1 4 5 6+/*&8) i. >: 5
       4   0.444444  0.235294       0.16  0.121212   0.097561
     0.5   0.166667       0.1  0.0714286 0.0555556  0.0454545
    _0.2 _0.0769231 _0.047619 _0.0344828 _0.027027 _0.0222222
0.166667  0.0714286 0.0454545  0.0333333 0.0263158  0.0217391

Потім зменшіть стовпчики знизу вгору за допомогою віднімання

   ([:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 0.129426 0.0422205 0.0207553 0.0123137 0.00814508

Розділіть кожні 16 k для k на [0, n ] на кожен результат

   (16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 0.00808913 0.000164924 5.06722e_6 1.87893e_7 7.76775e_9

Знайдіть сукупні суми

   ([:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 3.14142 3.14159 3.14159 3.14159 3.14159

Обчисліть 10 k для k в [0, n ] і помножте його з кожним

   (10&^(*)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 31.4142 314.159 3141.59 31415.9 314159

Потім підлогу кожного з виробів

   (10&^(<.@*)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3 31 314 3141 31415 314159

Розподіліть його на ту саму потужність 10, щоб отримати результати

   (10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3 3.1 3.14 3.141 3.1415 3.14159

Привіт! Радий, що хтось використав поліномічне спрощення.
Чарівна восьминога урна

@carusocomputing На жаль, я просто скоротив використання коефіцієнтів, створивши таблицю значень для підсумовування стовпців
миль

Все-таки чудово зроблено на обох реалізаціях.
Чарівна урва восьминога

3

PARI / GP, 86 байт

n->for(k=p=0,n,printf("%."k"f\n",(p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k/10^k))

Або без десяткової крапки в 69 байтах :

n->for(k=p=0,n,print((p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k))

Замість того, щоб ділити на 16 k кожну ітерацію, попереднє значення p замість цього множимо на 16 . Підлога p ÷ (8/5) k - це значення π, усічене до правильної кількості цифр.

Використання зразка

$ gp
? n->for(k=p=0,n,printf("%."k"f\n",(p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k/10^k))
? %(20)
3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846

3

C GCC, 118 байт

Гольф:

main(){double k,a,s=1,t;k=a=0;while(k<15){t=k++*8;a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;s*=16;printf("%.15lf\n",a);}}

Безголівки:

main(){
    double k,a,s=1,t;
    k=a=0;
    while(k<15){
        t=k++*8;
        a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;
        s*=16;
        printf("%.15lf\n",a);
    }
}

Щоб змінити n, просто змініть while (k <15) на while (k <n)

вихід:

$ gcc pigolf.c -o pigolf
some gcc screaming warnings
$ ./pigolf 
3.133333333333333
3.141422466422466
3.141587390346582
3.141592457567436
3.141592645460336
3.141592653228088
3.141592653572881
3.141592653588973
3.141592653589752
3.141592653589791
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793

Максимальна точність - 15 знаків після коми, я можу збільшити будь-яке значення з gmp, але, можливо, наступного пі дня: P

з гарним принтом, 143 байти

Гольф:

main(){double k,a,s=1,t;char o[19];k=a=0;while(k<15){t=k++*8;a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;s*=16;snprintf(o,k+3,"%.15lf",a);puts(o);}}

Безголівки:

main(){
    double k,a,s=1,t;
    char o[19];
    k=a=0;
    while(k<15){
        t=k++*8;
        a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;
        s*=16;
        snprintf(o,k+3,"%.15lf",a);
        puts(o);
    }
}

вихід:

$ gcc pigolf_pretty.c -o pigolf_pretty
more gcc screaming warnings
$ ./pigolf_pretty
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793

1
Ласкаво просимо на сайт! Це хороша перша відповідь :)
DJMcMayhem

Парентез біля - не був би необхідним
RosLuP

Дякую @RosLuP :)
llpinokio


@ceilingcat ++ t багато разів всередині одного оператора було б для C (і компілятора C) Невизначена поведінка
RosLuP

2

Формула IBM / Lotus Notes, 125 байт

p:=0;@For(n:=0;n<=a;n:=n+1;b:=8*n;p:=p+@Power(16;-n)*(4/(b+1)-2/(b+4)-1/(b+5)-1/(b+6));o:=o:@Left(@Text(p);n+@If(n=0;1;2)));o

Формула в обчислюваному полі з іншим полем, яке називається "а" для введення.

В основному порт алгоритму з відповіді Python від @shebang. Обчислює до 15 цифр, після яких він скорочується через обмеження мови (див. Вихід). Доводилося витрачати 12 байтів із заявою @If в кінці, щоб позбутися цього. після 3 на старті: - /

Вибірка зразка

Безумовно

p:=0;
@For(n:=0; n<=a; n:=n+1;
 b:=8*n;
 p:=p+@Power(16;-n)*(4/(b+1)-2/(b+4)-1/(b+5)-1/(b+6));
 o:=o:@Left(@Text(p);n+@If(n=0;1;2))
 );
o

але тоді формула Примітки ніколи не стане мовою для гольфу. Дякуємо @Shebang за натхнення.
ElPedro

0

C #, 183 байт

Гольф:

void F(int n){double s=0;for(int k=0;k<=n;k++){s+=1/Math.Pow(16,k)*(4.0/(8*k+1)-2.0/(8*k+4)-1.0/(8*k+5)-1.0/(8*k+6));double p=Math.Pow(10,k);Console.WriteLine(Math.Truncate(s*p)/p);}}

Безголівки:

void F(int n)
{
    double s = 0;

    for (int k = 0; k <= n; k++)
    {
        s += 1/Math.Pow(16, k)*(4.0/(8*k + 1) - 2.0/(8*k + 4) - 1.0/(8*k + 5) - 1.0/(8*k + 6));
        double p = Math.Pow(10, k);

        Console.WriteLine(Math.Truncate(s*p)/p);
    }
}

Хіба це не печатка 3.14159265358979для будь-яких n >= 14з - за подвійну точність?
Емінья

Так, але я не маю ідеї для подолання.
paldir

Ви можете використовувати бібліотеку BigInteger під час обчислення, а потім форматування виводу у вигляді рядка.
Емінья

0

APL (NARS), 206 символів, 412 байт

fdn←{1∧÷⍵}⋄fnm←{1∧⍵}⋄r2fs←{q←⌈-/10x⍟¨(fdn ⍵),fnm ⍵⋄m←⎕ct⋄⎕ct←0⋄a←⌊⍵×10x*⍺⋄⎕ct←m⋄k←≢b←⍕a⋄0≥k-⍺:'0.',((⍺-k)⍴'0'),b⋄((k-⍺)↑b),'.',(k-⍺)↓b}⋄p←{+/¨{k←1+8×⍵⋄(+/4 2 1 1÷k,-k+3..5)÷16*⍵}¨¨{0..⍵}¨0..⍵}⋄q←{⍪⍵r2fs¨p⍵}

Це знаходить все апроксимацію у великому раціональному, ніж використовувати одну функцію, яка перетворює велике раціональне в числовий рядок ... тест:

 q 1x
3.1 
3.1 
  q 2x
3.13 
3.14 
3.14 
  q 3x
3.133 
3.141 
3.141 
3.141 
  q 10x
3.1333333333 
3.1414224664 
3.1415873903 
3.1415924575 
3.1415926454 
3.1415926532 
3.1415926535 
3.1415926535 
3.1415926535 
3.1415926535 
3.1415926535 
  q 20x
3.13333333333333333333 
3.14142246642246642246 
3.14158739034658152305 
3.14159245756743538183 
3.14159264546033631955 
3.14159265322808753473 
3.14159265357288082778 
3.14159265358897270494 
3.14159265358975227523 
3.14159265358979114638 
3.14159265358979312961 
3.14159265358979323271 
3.14159265358979323815 
3.14159265358979323844 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
  q 57x     
3.133333333333333333333333333333333333333333333333333333333 
3.141422466422466422466422466422466422466422466422466422466 
3.141587390346581523052111287405405052463875993287757993640 
3.141592457567435381837004555057293394007389950594818748976 
3.141592645460336319557021222442381831727406617979907186696 
3.141592653228087534734378035536204469558528012197801934814 
3.141592653572880827785240761895898484239065603786606461624 
3.141592653588972704940777767170189446971120489811822860633 
3.141592653589752275236177868398102225795024633409061087027 
3.141592653589791146388776965910347414779015888488996772587 
3.141592653589793129614170564041344858816452676296281615895 
3.141592653589793232711292261930077163422606275435901151635 
3.141592653589793238154766322501863827762609260414389714560 
3.141592653589793238445977501940281666096938425156252904675 
3.141592653589793238461732482037982486800056278143046732780 
3.141592653589793238462593174670682882792683045699610435502 
3.141592653589793238462640595138128445061235672871301070791 
3.141592653589793238462643227424822458237094279625505676929 
3.141592653589793238462643374515761485970237552267559842751 
3.141592653589793238462643382784091514246623611329334708720 
3.141592653589793238462643383251362615881909316518417908555 
3.141592653589793238462643383277897474896408560218644955706 
3.141592653589793238462643383279410929692483875831459799593 
3.141592653589793238462643383279497597978087353533999465917 
3.141592653589793238462643383279502579284902684600486947911 
3.141592653589793238462643383279502866555094658758532859204 
3.141592653589793238462643383279502883173477103651067488504 
3.141592653589793238462643383279502884137610730938143080855 
3.141592653589793238462643383279502884193695667358321264063 
3.141592653589793238462643383279502884196966326705909950134 
3.141592653589793238462643383279502884197157502154596455091 
3.141592653589793238462643383279502884197168700950456888403 
3.141592653589793238462643383279502884197169358296080453391 
3.141592653589793238462643383279502884197169396954642664355 
3.141592653589793238462643383279502884197169399232246022950 
3.141592653589793238462643383279502884197169399366660542801 
3.141592653589793238462643383279502884197169399374605817825 
3.141592653589793238462643383279502884197169399375076175949 
3.141592653589793238462643383279502884197169399375104060947 
3.141592653589793238462643383279502884197169399375105716347 
3.141592653589793238462643383279502884197169399375105814747 
3.141592653589793238462643383279502884197169399375105820603 
3.141592653589793238462643383279502884197169399375105820952 
3.141592653589793238462643383279502884197169399375105820973 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.