Причини припущень щодо функції розподілу мікрофайлів?


10

У статті Microfacet Модель заломлення через шорсткі поверхні (серед інших) нагадує нам такі припущення про функції розподілу microfacet D:

  1. Щільність мікрографа позитивно оцінюється
  2. Загальна площа мікроповерхні принаймні така ж велика, як і відповідна макроповерхня
  3. (Підписана) проектована область мікроповерхні є такою ж, як проектована область макроповерхні для будь-якого напрямку v

Я можу зрозуміти, чому 1) щільність розподілу є позитивною величиною, і інтуїтивно вважаю, що 2) означає, що загальна площа нахилених мікропоширень не може бути меншою, ніж їх проекція.
Однак я не впевнений, що розумію виправдання для 3). Що означає третя умова?

Відповіді:


10

Це геометричне припущення, як і два інших. Розглянемо плоску макроповерхня. Його проектована площа в будь-якому напрямку просто разів перевищує його площу (де - нормальна поверхня). Зокрема, випадок, коли ви дивитесь на нього вздовж норми, найпростіший: проектована площа дорівнює площі поверхні.vv ˙N^N^

Тепер розділіть макроповерхня на мікроповерхні. Загальна площа мікрофайлів становить щонайменше стільки ж (припущення 2), але кожне «перехитування» в поверхні відгинає нормалі окремих мікрографов від початкової норми. Якою б формою не було мікрофайлів, сума їх проектованих площ не змінюється. У випадку, коли ви дивитесь на нормальне, легко помітити, що загальна проектована площа однакова: поверхня повинна бути більшою чи меншою, щоб вона могла змінюватися.

У будь-якому напрямку мікрофасет повинен покривати частину початкової проектованої поверхні поверхні. Зміна орієнтації мікроповерхню під час заповнення цієї ділянки не змінює проектовану площу.

Є один хитрий випадок, де мікрофайли перетинаються один з одним. У цьому випадку загальна площа більша, тому що деяка площа покрита більш ніж одним мікроповерхом. Але в цьому випадку принаймні один з мікрофайлів повинен в кінцевому підсумку вказувати від напрямку зору, назад на поверхню. У цьому випадку крапковий виріб є негативним, тому це скасовує область, охоплену більш ніж одним мікротекстом. Ось чому текст обережно виділяє, що це підписана проектована область.

Є ще один хитрий випадок - мікрорайони простягаються повз силует об'єкта. Це може статися, коли ви дивитесь з дуже оглядових кутів або там, де над периметром поверхні нависають висячі грані. У цьому випадку прогнозована площа мікрофайлів буде більшою, що порушує третє припущення. Ми зазвичай не розглядаємо цей випадок. Інтуїтивно це збігається з тим, що такі прийоми, як набивання на карту, не змінюють форми силуету об'єкта.


1
Я думаю, що навіть у випадку із силуетом використання підписаної проектованої області (як ви зазначали) означає, що припущення 3 не порушено, доки межі мікроповерхні відповідають макроповерхні. Навіть якщо над силуетом є нависання, підписана проектована зона граней на передній і задній стороні перегину скасується.
Натан Рід

(Крім того, можливо, це само собою зрозуміло, але я думаю, що припущення також гарантують, що мікроповерхня є приємною, двоповерховою поверхнею без жодних отворів чи інших дивних речей.)
Nathan Reed,

@NathanReed Це правда, я повинен був би бути більш точним щодо цього. Щодо того, що гарантують припущення, я думаю, що це навпаки: той факт, що поверхня, якоюсь гранею, повинна бути цілою межею між деякими «всередині» та деякими «зовні», змушує її мати три властивості .
Dan Hulme
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.