Існує більше одного способу "зв'язати" PCP (можливо, на багатьох!), і, здається, існує багато різноманітних досліджень багатьох варіантів. обмеження кількості об'єднаних блоків або загальної довжини об'єднаних рядків параметром, вказаним на вході (вказаному у двійковій), видається, що NExpSpace є повним, але вони не бачили цього написаного в статті. див. Проблема обмеженої кореспонденції після публікації NP-Повне доказ , tcs.se. якщо ви обмежите той самий параметр "довжина конкатенації" поліномом вхідного розміру, його, очевидно, PSpace завершено. знову не бачив, що написано де-небудь, незважаючи на деякий пошук.
Існує також дещо пов'язане дослідження щодо вирішення особливих випадків PCP (дещо нагадує дослідження зайнятого Бівера), див., наприклад, вирішення PCP від Чжао або [8]. зауважимо, що це також чудовий / новаторський випадок застосування обчислень ДНК для дещо імовірнісного підходу. [3] також, мабуть, ще є дослідження Халави [4], [7] щодо інших варіантів, що вирішуються. [5,6] - подальші різні результати.
[1] Вирішення проблеми листування постів Чжао (v2?)
[2] Поліноміальне скорочення від будь-якої задачі, повного NP, до обмеженого PCP , cs.se
[3] Використання ДНК для вирішення обмеженої проблеми кореспонденції Карі та ін
[4] Про проблему поштової кореспонденції для писемних монотонних мов Галава та ін
[5] Проблема листування пошти над одинарним алфавітом Рудницького
[6] Проблема
поштової кореспонденції з частково комутаційними алфавітами Барбара Клундер, Войцех Райттер
[7] Деякі нові результати щодо проблеми кореспондентської кореспонденції та її модифікацій від Halava, Harju
[8] Створення складних примірників проблеми кореспонденції Лоренца