NTIME (n ^ k) ≠ DTIME (n ^ k)?


33

У "Про детермінізм проти недетермінізму та пов'язані з цим проблеми" (Proc. IEEE FOCS, стор. 429–438, 1983) Пол, Піппенгер, Семереді та Троттер довели, що .
NTIME(n)DTIME(n)NTIME(n)DTIME(n)

Це відповідає на моє запитання при k = 1. Чи відомо щось про подібний результат для іншого фіксованого k?

Відповіді:


26

Невідома безумовна нижня межа для жодного k 2k2 в моделі багатошарової ТМ (або будь-якої моделі, сильнішої за неї).

NTIME(nk)TIME(nk)c1kNTIME(nk)TIMESPACE(nk,nk/c)NTIME(nk)TIMESPACE(nk,nk/c). Here, TIMESPACE(nk,nk/c)TIMESPACE(nk,nk/c) is the class of languages recognized by machines using time nknk and space nk/cnk/c simultaneously. Clearly TIMESPACE(nk,nk/c)TIME(nk)TIMESPACE(nk,nk/c)TIME(nk) but it is not known whether they are equal.

If you assume for some k2k2 that NTIME(nk)=TIME(nk)NTIME(nk)=TIME(nk), you get interesting consequences. P=NPP=NP is obvious, but it also implies that NLPNLP. This can be proved using an "alternation-trading" argument. Basically, for every kk and every language LNLLNL, there is a constant cc and some alternating machine that recognizes LL and makes cc alternations, guesses O(n)O(n) bits per alternation, then switches to a deterministic mode and runs in nknk time. (This follows, for example, from playing around with the constructions in Fortnow, "Time-Space Tradeoffs for Satisfiability" (1997).) Now if TIME(nk)=NTIME(nk)TIME(nk)=NTIME(nk) then all these cc alternations can be removed with only a small amount of overhead, and you end up with a TIME(nk)TIME(nk) computation that recognizes LL. Hence NLTIME(nk)PNLTIME(nk)P. Probably no such alternating simulation exists, but if you can rule it out, then you'll have the lower bound you seek. (Note: I believe that the above argument is also in Kannan's paper.)


11

while not exactly what you are asking, rj lipton comments in his blog on the foundational difficulty of results in this area and that the typical approach of "padding" does not apply [1] & points out that the PPST result as you cite has recently been slightly extended (by a logarithmic factor) by Santhanam [2] ie

DTIME(nlog(n))NTIME(nlog(n))

DTIME(nlog(n))NTIME(nlog(n))

[1] http://rjlipton.wordpress.com/2011/01/19/we-believe-a-lot-but-can-prove-little/

[2] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2392


1
The official version of Rahul Santhanam's 2001 paper is dx.doi.org/10.1109/CCC.2001.933895 (and is hardly recent).
András Salamon

Lipton used the phrase "more recently" in his blog citing it. its "more recent" to the PPST 1983 result.
vzn
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.