У «Квантових обчисленнях та квантовій інформації» Майка та Айка дуже детально пояснюється алгоритм Гровера. Однак у книзі та у всіх поясненнях, які я знайшов в Інтернеті щодо алгоритму Гровера, начебто не згадується про те, як побудований Oracle Grover, якщо ми вже не знаємо, в якому стані це шукаємо, перемагаючи мету алгоритм. Зокрема, моє запитання таке: враховуючи деякий f (x) такий, що для деякого значення x, f (x) = 1, але для всіх інших, f (x) = 0, як можна побудувати оракул, який отримає нас від наш початковий, довільний стан | x> | y> to | x> | y + f (x)>? Буде дуже вдячна якомога більше чітка деталь (можливо, приклад?). Якщо така конструкція для будь-якої довільної функції можлива за допомогою Адамара, Паулі чи інших стандартних квантових воріт,