Чи набір усіх примітивних слів є головною мовою?


17

Слово ww називається примітивним , якщо немає слова vv і k > 1,k>1 так що w = v kw=vk . Множина QQ усіх примітивних слів над алфавітом ΣΣ - добре відома мова. WLOG ми можемо вибрати Σ = { a , b }Σ={a,b} .

Мова LL є простим , якщо для кожної мови AA і BB з L = A BL=AB маємо A = { ϵ }A={ϵ} або B = { ϵ }B={ϵ} .

Q простий?

За допомогою SAT вирішувач я міг би показати , що ми або маємо { а , Ь } A{a,b}A або { а , Ь } B{a,b}B , як в іншому випадку { б б , б б в б } Q{ababa,babab}Q не може бути розкладено AA і BB , але з тих пір застрягли.

Відповіді:


13

Відповідь - так. Припустимо , що ми маємо розкладання на множники Q = A BQ=AB .

Одне легке зауваження - це те, що AA і BB повинні бути неперервними (оскільки для w A BwAB ми отримаємо w 2Qw2Q ). Зокрема, лише один з A , BA,B може містити ϵϵ . Можна вважати , без втрати спільності (так як в іншому випадку цілком симетрично) , що е BϵB . Тоді , так як і б не може бути врахований в непусті чинники, ми повинні мати , б A .aba,bA

Далі отримаємо, що a m b nAambnA (і, абсолютно аналогічно, b m a nAbmanA ) для всіх m , n > 0m,n>0 шляхом індукції на mm :

При т = 1m=1 , так як в б пQabnQ , ми повинні мати в б п = U Vabn=uv з U A , про BuA,vB . Оскільки u ϵuϵ , vv має бути b kbk для деякого k nkn . Але якщо k > 0k>0 , то оскільки b AbA отримуємо b 1 + kQb1+kQ , протиріччя. Такv = εv=ϵ , а б п . abnA

For the inductive step, since am+1bnQam+1bnQ we have am+1bn=uvam+1bn=uv with uA,vBuA,vB. Since again uϵuϵ, we have either v=akbnv=akbn for some 0<k<m+10<k<m+1, or v=bkv=bk for some k<nk<n. But in the former case, vv is already in AA by the induction hypothesis, so v2Qv2Q, contradiction. In the latter case, we must have k=0k=0 (i.e. v=ϵv=ϵ) since from bAbA we get b1+kQb1+kQ. So u=am+1bnAu=am+1bnA.

Now consider the general case of primitive words with rr alternations between aa and bb, i.e. ww is either am1bn1amsbnsam1bn1amsbns, bm1an1bmsansbm1an1bmsans (for r=2s1r=2s1), am1bn1ams+1am1bn1ams+1, or bm1an1bms+1bm1an1bms+1 (for r=2sr=2s); we can show that they are all in AA using induction on rr. What we did so far covered the base cases r=0r=0 and r=1r=1.

For r>1r>1, we use another induction on m1m1, which works very much the same way as the one for r=1r=1 above:

If m1=1, then w=uv with uA,vB, and since uϵ, v has fewer than r alternations. So v (or its root in case v itself is not primitive) is in A by the induction hypothesis on r for a contradiction as above unless v=ϵ. So w=uA.

If m1>1, in any factorization w=uv with uϵ, v either has fewer alternations (and its root is in A unless v=ϵ by the induction hypothesis on r), or a shorter first block (and its root is in A unless v=ϵ by the induction hypothesis on m1). In either case we get that we must have v=ϵ, i.e. w=uA.


The case of Q:=Q{ϵ} is rather more complicated. The obvious things to note are that in any decomposition Q=AB, both A and B must be subsets of Q with AB={ϵ}. Also, a,b must be contained in AB.

With a bit of extra work, one can show that a and b must be in the same subset. Otherwise, assume wlog that aA and bB. Let us say that wQ has a proper factorization if w=uv with uA{ϵ} and vB{ϵ}. We have two (symmetric) subcases depending on where ba goes (it must be in A or B since it has no proper factorization).

  • If baA, then aba has no proper factorization since ba,aB. Since abaA would imply ababAB, we get abaB. As a consequence, bab is neither in A (which would imply bababaAB) nor in B (which would imply ababAB). Now consider the word babab. It has no proper factorization since babAB and abab,baba are not primitive. If bababA, then since abaB we get (ba)4AB; if bababB, then since aA we get (ab)3AB. So there is no way to have bababAB, contradiction.
  • The case baB is completely symmetric. In a nutshell: bab has no proper factorization and cannot be in B, so it must be in A; therefore aba cannot be in A or B; therefore ababa has no proper factorization but also cannot be in either A or B, contradiction.

I am currently not sure how to proceed beyond this point; it would be interesting to see if the above argument can be systematically generalized.


Wow, you have my respect. I'll go through it later today or tomorrow as I don't have time right now, but I am seriously impressed :) It took me a few hours to get that {a, b} are in A but I didn't exploit that \epsilon is not a primitive word. How did you approach this problem (or was it "just do it"?)? How long did it take you to come up with that proof?
Henning

Thanks! I got the main idea (showing that any nonempty proper suffix of words must be in A) by thinking about what happens to some "simple" words. ϵ,a, and b were relatively straightforward, an or bn were out of the question, and considering ab,abb,abbb, got me on the right path.
Klaus Draeger

4
Your proof is beautiful and not as hard as I thought (I feel quite stupid now, I spent some time thinking about it). However it seems to heavily relay on epsilon not being element of Q. Is Q{ϵ} also prime?
Henning

1
Good question! I'll have to get back to you on that one.
Klaus Draeger

2
Thanks for the comments, and sorry for the delay. The case where we want to include the empty word seems to be more complicated, see update.
Klaus Draeger
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.