Чи може Dynare вирішити моделі загальної рівноваги (GE) з витратами на коригування без опуклості?


8

Я знаю, що Dynare (який сидить на вершині Matlab) може вирішити багато видів динамічної стохастичної загальної рівноваги (DSGE) та моделей, що перекриваються поколіннями (OLG). Я також знаю, що Dynare може впоратися з різними витратами на коригування. Наприклад, я бачив приклади витрат на коригування опуклості в Dynare. Зокрема, база даних макроекономічних моделей передбачає замовлення 50 моделей, сумісних з Dynare, а керівництво користувача вказує кілька моделей (наприклад, NK_IR04 та US_NFED0) з квадратичним (типом опуклої) коригування витрат.

Чи може Dynare вирішити моделі з витратами на коригування, що не є опуклими, як рівноважна модель кускових інвестицій в житло (Iacoviello і Pavan (2008)) або житловий борг та борг за життєвим циклом і за бізнес-циклом (Iacoviello і Pavan (2013))? Невипуклий має специфічне математичне значення, але в контексті цих робіт він вказує, що витрати на коригування не пропорційні сумі коригування. Натомість витрати на коригування мають фіксовану вартість, пропорційну поточній вартості активів. Однак існують і інші форми витрат на коригування без опуклості. Якщо Dynare може вирішити будь-яку модель за допомогою будь-якого виду витрат на коригування, що не є опуклим, це цікавить.

Якщо моделі з цими витратами на коригування можна вирішити за допомогою Dynare, наведіть приклад або посилання на приклад (якщо це можливо). Якщо Dynare в даний час не може вирішити ці моделі, чи є опублікований код, який може це зробити? Навіть зразок коду для конкретного модельного рішення, а не загального продукту типу Dynare, був би корисним.

Детальніше про витрати на коригування, що не є опуклим :

Я малюю тут свою мову з Моделі житла за наявності витрат на коригування: Структурна інтерпретація стійкості звичок (Флавін та Накагава (2008))

У той момент, коли будинок продається, домогосподарство сплачує вартість трансакцій, пропорційну вартості проданого будинку, так що багатство також невпинно змінюється .... Житлова модель, розроблена в розділі I, посилається на четвертий набір припущень: корисність залежить нерозривно Що стосується невитраченого споживання та житла, то невитратне споживання регулюється дорожче, але житло підлягає коригуванню не випуклою коригуванням ( ).λ>0

Можливо, ця мова є нестандартною, але це цитата з статті в AER, і коли я обговорював її з іншими, люди, здається, знають, про що я говорю. Дві згадані статті не використовують цю мову, але мають однакову грубу форму, що трансакційні витрати збільшуються не в міру коригування, а скоріше, ніж будь-яке використання коригування (крім невеликого шматочка, можливо для амортизації чи покращення одиниці). можливо) запускає вартість, пов’язану зі змінними стану замість змінних керування. У статті " Про природу витрат на коригування капіталу" (Cooper and Haltiwanger (2005)), схоже, використовуються не випуклі коригування витрат однаково у твердій установці капіталу.

Спираючись на аналіз Абеля та Еберлі [1999], Купера, Халтіванґера та Пауер [1999] та Кабаллеро та Енгеля [1999], в періоди інвестиційних установок виникають постійні витрати на коригування. Як правило, ці невипуклі витрати на коригування покликані охоплювати неподільність капіталу, збільшуючи прибуток до встановлення нового капіталу та збільшуючи прибуток від перепідготовки та реструктуризації виробничої діяльності. Ці постійні витрати на коригування представляють потребу в реструктуризації підприємств, перепідготовці робітників та організаційній реструктуризації в періоди інтенсивних інвестицій


1
Після детального ознайомлення, Іаковіелло та Паван дійсно мають фіксовану вартість коригування, вибачте за плутанину.
ivansml

Відповіді:


4

Коротка відповідь: ні.

Дінаре та методи лінеаризації / збурення взагалі призначені для вирішення

  • гладкі моделі
  • апроксимується навколо однієї точки простору стану (стаціонарний стан).

Модель з фіксованою вартістю, як правило, не є гладкою, і її поведінка поза стаціонарним станом може бути дуже різною, якщо, наприклад, фірма переходить від інвестування до не інвестування. На найбільш практичному рівні модель з фіксованою вартістю зазвичай включатиме рівняння, такі як

V=макс{Vінвестувати,Vне інвестувати},

який не можна ввести в Dynare, оскільки max оператор не підтримується. З іншого боку, умови першого порядку для опуклої (наприклад, квадратичної) коригування вартості все ще гладкі (можна просто додати додаткові умови до рівняння Ейлера для інвестицій), і тому їх можна легко вирішити за допомогою Dynare.

Для фактичного обчислення оптимальної політики з фіксованими витратами, як правило, слід використовувати глобальний метод, наприклад, ітерацію функції значення. Я не знаю жодного стандартизованого набору інструментів для вирішення подібних проблем, тому, можливо, вам доведеться ввести свій власний код.

PS: Є кілька хитрощів моделювання, які роблять проблему більш гладкою, як правило, в умовах, де існує багато, можливо, неоднорідних агентів / фірм. Наприклад, Thomas (2002) відслідковує кількість фірм залежно від того, як довго вони не інвестували, і розв'язує модель за допомогою стандартної лінеаризації на цьому розширеному просторі стану. Khan & Thomas (2007) припускають, що фіксована вартість є випадковою та iid у часі та в різних фірмах, тому можна оцінити середню реалізацію постійної вартості для отримання функцій плавного значення. Miao & Wang (2014) використовують аналогічний підхід у моделі з постійною віддачею масштабу та показують, як вона агрегується до версії представницької фірми з лише опуклими витратами на коригування.


1
@Bryce Але в Центральній та Східній Європі вартість не є рівноважною (і як я розумію, її головне призначення - досягнення нульових середніх прибутків). Що конкретно ви маєте на увазі, залежно від державних витрат?
ivansml

Я перечитував згадані статті ОП, і я згоден з вами зараз. Я думаю, що ОП нерозуміє невипуклі витрати, тому що обидва документи несуть розрив у функціях коригування витрат. Ця цитата в оригінальній публікації неправильно відображає те, що роблять документи: "Невипуклий має специфічне математичне значення, але в контексті цих робіт він вказує витрати на коригування, які не пропорційні розміру коригування. Натомість витрати на коригування мають фіксовану вартість пропорційна поточній вартості активів ".
Брайс

@Bryce я теж не переглядав ці документи, але я згоден, схоже, вони не мають справу з фіксованою прикметкою. вартість, як правило, визначена (хоча остання має трансакційну вартість, пропорційну абсолютній величині коригування, яка також не є рівною). Можливо, ОП має уточнити.
ivansml

1
@MichaelGreinecker Формально це може бути можливим, але все ж виникає питання, чи може локальне наближення від точки переключення захоплювати поведінку функції. Наприклад, якщо я хочу наблизити з розширенням Тейлора навколо , навіть якщо я заміню макс на його гладку версію, я б припустив, що наближення вірогідне бути бідним для . f(х)=макс{х2,1}х=2х<1
ivansml

1
@ Добре Так, більшість моделей передбачає максимізацію, але для того, щоб вирішити їх на комп’ютері, нам зазвичай потрібно вивести умови першого порядку у вигляді рівнянь. Дінаре сподівається, що модель описується більш-менш умовами у виглядіЖ(хт-1,хт,хт+1,ϵт)=0, де Ж:R3нх+нϵRнхповинна бути диференційованою функцією.
ivansml

3

Як правило, не можна чітко заявляти про типи невипуклих витрат, з якими Dynare може впоратися. Багато різноманітних факторів грає про те, чи можна «вирішити» модель Дінаре чи ні. Правильно визначено стаціонарний стан? Чи є модель нерухомою? Чи є модель диференційованою скрізь в ергодичному наборі? Чи кількість ендогенних та екзогенних змінних дорівнює кількості рівнянь? Чи стабільна модель Бланшар-Кан?

Але, щоб відповісти на ваше запитання, чи може Dynare вирішити модель із фіксованою державою контингентом? Так. Це не складно, вам слід спробувати створити його самостійно. Спробуйте змінити просту модель RBC з капіталом та облігаціями. Біда не в тому, щоб викликати витрати, а скоріше знайти стабільний стан, який може бути досить обтяжливим, якщо його не зробити розумно.

Однак Дінаре не може вирішити Iacoviello та Pavan 2013 через мінімальну функцію, виявлену в обмеженні запозичення. Ця функція min викликає точку в ергодичній множині, яка не є диференційованою. Дінаре чисельно наближає оптимальні функції політики щодо сталого стану, використовуючи методи збурень. Це вимагає використання теореми неявної функції для побудови розширень Тейлора оптимальної політики, отже, ви повинні мати можливість брати похідні скрізь у межах ергодичного набору.


Чи можете ви надати вказівки щодо змін модних файлів, щоб реалізувати приклад вартості транзакцій, що не є опуклими? Я деякий час шукав приклад того, як це зробити в «Динаре» перед публікацією. Я не тільки не дізнався, як це зробити, я навіть не зміг знайти документацію про те, що це можна зробити, таким чином, питання.
BKay
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.