Є два (або N) резистори в серії більш точні, ніж один великий резистор?


34

Скажімо, у мене є один резистор 2 кОм з допуском 5%. Якщо я заміню його двома резисторами 1 кОм з 5% -ним відхиленням, чи призведе до відхилення вгору, зменшення чи залишиться незмінним?

Я поганий з вірогідністю, і я не впевнений, що саме толерантність говорить про опір та його поширення.

Я усвідомлюю, що в «гіршому випадку» це буде те саме; Мене більше цікавить, що буде в середньому. Чи збільшиться шанс отримати більш точне значення, якщо я використовую ряд резисторів (оскільки відхилення скасують один одного)?

На "інтуїтивному рівні" я думаю, що це буде, але я не маю уявлення, як робити математику з ймовірностями і з'ясувати, чи я насправді правий.


8
Це було дещо гаряче спірне питання кілька років тому. Дивіться: Зменшення толерантності резисторів вручну
Tut

3
2кΩ5%=2кΩ±100Ω тоді як , таким чином,1 k Ω 5 % + 1 k Ω 5 % = 2 k Ω ± 50 Ω ± 50 Ω = 2 k Ω ± 100 Ω1кΩ5%=1кΩ±50Ω1кΩ5%+1кΩ5%=2кΩ±50Ω±50Ω=2кΩ±100Ω
Vladimir Cravero

3
Середнє значення, як завжди, є номінальним значенням. Ось для чого номінал. Це припускаючи, що розподіл R є рівномірним у діапазоні допусків, що не відповідає дійсності.
Володимир Крейвер

3
Ось цікава стаття , яка займається статистикою, хоча назва кілька вводить в оману , якщо ви приймаєте толерантність як бути в гіршому випадку: Об'єднання декількох резисторів для поліпшення Толерантність
Tut

1
Мені здається, що будь-яка "реальна" вигода або "розвінчена" причина не залежить від того, що думав дизайнер схеми. Тільки тому, що ми знаємо, що щось не так, це не означає, що дизайнер не діяв за цим принципом. Тож "чи варто це робити" і "чому це ради робить" - це різні питання.
JDługosz

Відповіді:


75

Найгірший випадок не покращиться. Результат вашого прикладу все ще становить 2 кОм ± 5%.

Ймовірність того, що результат буде ближче до середини, стає кращою за допомогою декількох резисторів, але лише якщо кожен резистор є випадковим у межах свого діапазону , який включає, що він не залежить від інших. Це не так, якщо вони з того ж барабана або, можливо, навіть від того самого виробника протягом певного часового періоду.

Процес вибору виробника може також зробити помилку не випадковою. Наприклад, якщо вони роблять резистори з широкою дисперсією, то вибирайте ті, що потрапляють в межах 1%, і продають їх як 1% деталей, а потім продають решта у вигляді 5% деталей, 5% деталі матимуть розподіл із двома горбами при цьому значення не перевищують 1%.

Тому що ви не можете знати розподіл помилок у найгіршому вікні помилок і тому, що навіть якщо ви це зробили, найгірший випадок залишається тим самим, робити те, що ви пропонуєте, не корисно для електронного дизайну. Якщо вказати 5% резисторів, то конструкція повинна правильно працювати з будь-яким опором у межах ± 5%. Якщо ні, то вам потрібно більш чітко визначити вимогу опору.


6
+1 для ... якщо кожен резистор має випадкове значення незалежно від інших
Neil_UK

6
Відмінно зазначити, що виготовлення може створювати різні точності одного і того ж резистора з одним і тим же процесом на одній лінії. Це вразило мене як невтішним, і цілком розважливим.
Dan

2
@Olin Я б навіть пішов трохи далі про те, як виробники "сортують" деталі - вони роблять випадкову партію Rs, потім вони вибирають стільки "точних" оцінених (наприклад, 1%) Rs, скільки їм потрібно для очікування ринку , а решту перекиньте на нижню точку. діапазони. Те саме стосується допусків V для діодів 1N400X - я пригадую тестування деяких DO-41 1N4001, щоб зрозуміти, що вони бездоганно працюють на 230 В змінного струму ... Я запитав про це у продавця, і він сказав мені, що у них є лише одна лінія виробництва - вони беруть стільки 1N4003, скільки потрібно з високоспеціальних деталей, а всі інші продають, як 1N4001 - YMMV, очевидно.
vaxquis

6
@Tut: Сумніваюсь, виробники збираються розповісти, як вони тестують і сортують деталі. Все, що вони збираються сказати, - це те, що 5% деталей будуть знаходитись у межах 5% від номінальної вартості, і це все, про що ви все одно повинні піклуватися. Стратегії бінінгу деталей можуть змінюватися. Якщо його немає в аркуші даних, тоді не розраховуйте на нього і не намагайтеся здогадатися чи припускати його.
Олін Латроп

2
@Tut maximintegrated.com/en/app-notes/index.mvp/id/5663 We say "seems to" and "appears to" because sales volume and human nature also influence the mix. For example, the plant manager may need to ship 5% tolerance capacitors, but he does not have enough to meet the demand this month. He does, however, have an overabundance of 2% tolerance parts. So, this month he throws them into the 5% bin and makes the shipment. Clearly deliberate, human intervention can, and does, skew the statistics and method.
vaxquis

7

Відповідь багато залежить від розподілу реальних значень резистора та того, яким є власне запитання.

Я зробив моделювання, для якого генерував набір 100 000 резисторів з 1% допуском (простіше в роботі, ніж 5%). З цього я взяв 1 000 000 разів вибірки з двох і обчислив їх суму.

Для набору я припустив три різні розподіли:

  1. Вузький, ідеально гауссовий розподіл з . Це означає: 63% усіх резисторів знаходяться в діапазоні 1000 ± 2,5 Ом, а 99,999998% - в інтервалі 1000 ± 10 Ом . Подумайте про виробника з надійним виробничим процесом тут. Якщо він хоче 1кОм резисторів з 1%, його машина виробляє їх.σ=2.51000±2.5Ω1000±10Ω

  2. Рівномірний розподіл, коли ймовірність отримати будь-яке значення в діапазоні 1% дорівнює.
    Подумайте про виробника з дуже ненадійним виробничим процесом. Машина виробляє резистори будь-якого значення широкого діапазону, і йому доводиться вибирати резистори 1% / 1 кОм.

  3. Широкий гауссовий розподіл ( )σ=5 , де кожен резистор поза діапазоном 1% викидається і замінюється «хорошим». Це лише суміш перших двох випадків.
    Це виробник з кращим процесом. Більшість резисторів відповідають специфікаціям, але деякі доводиться розбирати.

Ось результат:

введіть тут опис зображення

  1. σнеш=2σолг
    ±10Ω±14.1ω14.1Ω/2000 рікΩ=0,7%

  2. Рівномірний розподіл стає трикутним розподілом. Ви все ще отримуєте пари резисторів 1980 або 2020 Ом (5%), але є більше комбінацій із меншою різницею від номіналу.

  3. Результатом також є суміш результатів перших двох випадків ...


Як було сказано на початку, це залежить від розподілу. У будь-якому випадку, більша ймовірність отримати опір з меншою різницею від номінального значення, але все ж є ймовірність отримати значення, яке знижується на 1%.

Подальші примітки:

  • Часто партія містить резистори, які мають майже однакове значення, що трохи перевищує номінальне значення. Наприклад, всі вони знаходяться в діапазоні 995 ... 997Ohm, що все ще добре в діапазоні 990 ... 1010Ohm. Поєднуючи два резистори, ви отримуєте менший розкид, але всі значення трохи низькі.

  • Резистори показують, наприклад, залежність від температури. Точність набагато краща, ніж 1% для забезпечення стійкості опору в інтервалі 1% при різних температурах.


3
На жаль, ваш мислительний експеримент здебільшого дискваліфікується тією "подальшою запискою" - помилка не може бути випадковою, швидше за все, вона матиме зміщення, що складеться, або ж кілька послідовних ухилів, якщо ваш пул містить кілька виробничих партій.
Кріс Страттон

2
Крім того, якщо ви візьмете 5% резистор, побудований, вибравши досить хороші "невдалі" резистори з 1% виробничої лінії, то розподіл буде вимкнено ще більше.
храповик урод

Ваші графіки використовують "норму" як мітку для рівномірного розподілу. "Нормальний розподіл" - це ще один термін для "розподілу Гаусса", тому це дуже поганий вибір.
Пітер Кордес

@PeterCordes: Абсолютно правильно, виправлено!
помер

3

Забавне запитання. Практично, переглядаючи металеву плівку 1% 1/4 Вт, я виявив, що в партії розподіл був далеко не випадковим. Більшість R скупчуються навколо значення, яке може бути трохи вище або трохи нижче "цільового" значення. Так що принаймні для R-го я дивився, це не має ніякого значення.


1

Є два важливі цифри, які стосуються вашого питання.

Перший - "Найгірший сценарій": в абсолютно гіршому випадку один резистор 2k з 5% буде або 2.1k, або 1.9k. Один резистор 1k 5% буде 1,05k або 0,95k, а разом це доходить або до 2,1k, або до 1,9k. Так що в гіршому випадку, серія, купа резисторів з однаковою толерантністю завжди зберігають свою толерантність над загальною величиною і будуть такими ж хорошими, як один великий.

Інше важливе число - закон великих чисел. Якщо у вас 1000 резисторів, які мають ідеальне цільове значення і вказані з абсолютною максимальною помилкою 5%, звичайно, дуже ймовірно, що досить багато таких буде дуже близькою до цільового значення і що кількість резисторів з занадто великим високе значення є приблизно таким же високим, як число з меншим значенням. Процес виробництва таких компонентів, як резистори, підпадає під природний статистичний процес, тому надзвичайно ймовірно, що отримані резистори у великій партії в декількох виробництвах дають те, що називається кривою Гаусса. Така крива є симетричною навколо "бажаного" значення, і виробник спробує отримати "бажане" значення таким, яким він продає резистори, з статистичних причин виходу. Таким чином, ви можете зробити припущення, що якщо купити 100 резисторів, ви також отримаєте гауссовий розподіл. Насправді, це не може бути точним випадком, якщо для резисторів достатньо велика кількість може становити 10 тисяч, щоб отримати справжній гауссовий розподіл. Але припущення є більш справедливим, ніж те, що всі будуть відхилені в гіршому випадку в тому ж напрямку (всі з -5%, або всі з + 5%)

Це все добре і приємно, але що це означає? Це означає, що якщо у вас 10 резисторів 200 Ом при 5% послідовно, цілком ймовірно, що один буде 201 Ом, інший 199 Ом, інший - 204 Ом, ще один - 191 Ом, і т.д. і т. Д., І всі ці "Занадто низькі" та "занадто високі" значення компенсують одне одного, і раптом він стає великим 2-кілограмовим ланцюгом зі значно кращою точністю, через закон великих чисел.

Знову ж таки, це стосується лише конкретного випадку резисторів однакових значень послідовно. Хоча різні значення в серіях також можуть стати в середньому точнішими, ступінь, до якого це відбувається або наскільки це ймовірно, важко правильно висловити, не знаючи точного значення використання та точних значень.

Тож, принаймні, зовсім не шкідливо розміщувати багато резисторів однакової вартості послідовно, і зазвичай це дає набагато кращий результат. Поєднайте це з тим, що виготовлення величезної кількості дощок з трьома різними компонентами коштує набагато дешевше, ніж з 30-ти різними компонентами, і ви часто бачите конструкції, що мають лише 1 к і 10 к (а може бути і 100 Ом і 100 к), а також дешеві, високі -виробничі дрібнички, де будь-яке інше значення є комбінацією двох.


1
Навіть десятків тисяч може бути недостатньо, щоб отримати резистори від різних партій. Виробництво резисторів - це те, що відбувається в масових масштабах.
Пітер Грін

@PeterGreen Правда. Але, з досвіду можу сказати, що принаймні Yageo і TE мають внутрішню партію диференціації, яка добре вимірюється навіть по довжині смуги в 10 частин. Якщо будь-які зміни в діапазоні допуску гарантують краще, ніж кінцеве значення допуску. Це говорить про те, що відхилення в смузі 100 уніт часто виявляються меншими за 1/4 допуску і зазвичай не врівноважуються навколо цільового значення.
Асмільдоф

0

Тверді вуглецеві резистори майже не перестали існувати на ринку, оскільки вони легко запалюються та змінюють значення напругою. Зараз "вуглець" - це звичайно вуглецева плівка.

Це набагато стабільніший резистор, але не такий стабільний, як металева плівка або надмірно стійкий, як керамічні резистори виробництва Caddock. Зазвичай 0,025% доступні близько 50 доларів кожен. На сьогодні лабораторна оцінка 0,01% або вище коштувала близько 150 доларів.

Більшість дощок, з якими я працюю, використовують 1% металеву плівку smd, які зараз мають дуже низьку вартість після того, як з'являються на ринку кілька десятиліть. Стабільність з температурою і часом часто важливіша за абсолютне значення резистора.

Іноді я помічаю повідомлення в керівництві користувачів для свого тестового обладнання, щоб увімкнути його на 15 хвилин раніше, щоб показання напруги чи струму були в межах 0,1% в гіршому випадку. Якщо мені доведеться вручну вибирати серійні або паралельні резистори для абсолютного значення, з партії, яка є достатньо стабільною з часом (10 - 20 років), щоб бути корисною у виробництві.

Я не використовую обрізки для горщиків, якщо це не обов'язково, оскільки їх дрейф становить близько 200 проміле. Якщо мені доведеться використовувати обрізний горщик, я використовую серійні резистори, щоб максимально знизити значення обрізного горщика.

Для резисторів "перенапруги" мені зазвичай доводилося використовувати нікелево-хромований провід 14 гам, 30 ниток паралельно, щоб обробляти від 10 000 до 150 000 амп напруги тривалістю приблизно 20 мс кожен. Точні резистивні значення не були такими важливими, як живучість.

У цьому сенсі вони були схожі на дротяні резистори на стероїдах. Точність рідко перевищувала 10%, і вони пливли з температурою в кілька відсотків. Вони бігали занадто гарячими на дотик, але це було нормально, мова йшла про виживання суворих умов.

Ми використовували дротяні індуктори 6awg послідовно з керамічними пончиковими резисторами 0,1 Ом, розрахованими на 10 000 ампер-сплетів для формування хвиль. З'єднання проводилися за допомогою шин-брусків або локомотивом тросом 500 мсм. «Аварійне сміттєзвалище» - це резистор водонапірної башти, виготовлений з водою та мідним купоросом, діаметром 3 дюйма та висотою близько метра. Він мав опір близько 500 Ом, але був єдиним резистором, який міг скинути заряд (30 000 вольт) без видування.

Ви можете розділити волоски все, що хочете, відхилення, але врешті-решт ви будуєте те, що працює. Іноді толерантність доводиться заднім місцем до інших питань.

Я бачив відхилення в точних резисторах, скажімо, барабанах 5000, які, здається, пливуть вище або нижче ідеального значення (як вимірюється Fluke 87 DVM). Це робить комбінацію серій / паралель з точними значеннями майже неможливою. Я просто використовую ті, які найбільш підходять до потрібного значення.

При надточних рівнях (<0,025%) велике значення набуває контроль за зниженням температури, витоку на борту та шумом. Тепер вам потрібно додати деталі, щоб уникнути "відхилення" з часом від проблеми.

Що стосується вимірювань точним обладнанням (0,01% або вище),ніж один резистор, який вже має відхилення настільки близько до нуля, що не може бути проблемою.

Кілька резисторів послідовно або паралельно створюють кілька випадків зниження температури та відхилення. Розраховувати, що вони відмінять відхилення, є абсурдом, оскільки зниження температури завжди є функцією «добавки», а відхилення мають тенденцію до дрейфу в одному напрямку на барабанах 5000, але все ж відповідають специфікації допуску.

Щоб створити «ідеальне» значення резистора з декількох значень, тим, у кого позитивне відхилення знадобиться коефіцієнт від'ємної температури, тоді як ті, що мають серію чи паралель, які мають відхилення, потребують позитивного коефіцієнта температури. Обидва типи коефіцієнтів повинні були відповідати, щоб скасувати зниження температури.

З моєї точки зору, під час практичного нормального мої відповіді на @Amomum - НІ.


2
Як це відповідає на поставлене запитання?
CVn

@Michael Kjorling. Будь ласка, прочитайте останній пункт, який я щойно додав.
Sparky256

Корекція. Я додав 3 абзаци.
Sparky256

-1

З точки зору максимального / мінімального можливого відхилення, обидва випадки дають однаковий результат.

Якщо ви вважаєте ймовірність виникнення відхилення на 1% однаковою відхиленням на 5%, то обидва випадки дають однаковий результат.

Якщо ви вважаєте, що відхилення слідкувати за деяким нормальним розподілом, зосередженим на проектній величині резистора, все одно не робить ніякої різниці. Оскільки навіть думали, що окремі відхилення будуть меншими, сума наблизить їх до відхилень великого резистора. Імовірність 0,5% відхилення в резисторі 2kOhm така сама, як і в резисторі 1kOhm, навіть якщо значення відхилення відрізняється.


1
Якщо резистори невимовно дотримувались нормального розподілу, то використання декількох резисторів було б вдосконаленням. Проблема полягає в тому, що резистори не прагнуть цього робити, існує дуже висока співвідношення значень між декількома резисторами з однієї партії, і цілком ймовірно, якщо ви замовите купу резисторів однакового номінального значення, вони всі будуть надходити з та ж партія.
Пітер Грін

-2

Есум=1NЕ12+Е22+..+ЕN2
Есум=1252+52=3,53
введіть тут опис зображення

R=нR

2
Ви похитнулися, тому що в партії резисторів не очікується випадковості.
Скотт Сейдман,

2
Компоненти мають відхилення від відхилення від номінального значення. Але не можна очікувати, що розподіл помилки буде випадковим . Насправді це навряд чи буде. Математичне поняття "випадковий" (від якого залежить ваш розрахунок) має набагато конкретніше значення, ніж "невідоме", яке є фактичною ситуацією.
Кріс Страттон

3
@MarkoBursic Ви отримуєте цю інформацію через якесь дослідження / досвід чи просто інтуїцію? Якщо останнє, реальність може бути різною, оскільки більш точні резистори зазвичай виготовляються з іншим процесом повністю.
акалтар

1
@MarkoBursic Я не хочу тут бути середнім. Я не знаю правильної відповіді на це питання. Я просто бачу, що 1% резисторів - це "металева плівка", тоді як зазвичай 5% резистори "вуглецеві", тому я припускаю, що вони зазвичай виготовляються по-різному. Мені просто хотілося дізнатися, чи це насправді інсайдерська інформація, і в цьому випадку я помиляюся. Якщо припустити, що цей розподіл є фактичним, ваша відповідь хороша.
акалтар

1
Ймовірно, це гауссова розподіл помилок - більшість речей є. Що я хочу сказати, це те, що розподіл помилок, швидше за все, НЕ має нульового значення. Іншими словами, середній опір, ймовірно, не буде номінальним значенням
Скотт Сейдман

-2

Толерантність означає межу, над якою величина може відрізнятися від її фактичної величини. 5% 2k резистор означає, що опір буде мати значення між 1900ohm і 2100ohms. Тепер для двох 1k резисторів величина допуску додасть, що зростає, стає 10%. Це просте правило помилок. Детальніше про це ви можете прочитати в будь-якій книзі про прилади та вимірювання. Отже, це означає, що значення двох 1k резисторів буде змінюватися між 1800ohm і 2200ohms.


1
Просто неправильно. Два послідовних резистора 1 кОм 5% не роблять резистор 2% кОм 10%. Допуски не додають подібного.
Олін Латроп
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.