Якщо ви маєте справу з растрами різної роздільної здатності, чи слід перепропонувати найвищу чи нижчу роздільну здатність?


16

Я шукаю рекомендації щодо передового досвіду роботи з растровими шарами даних з різною роздільною здатністю та прогнозами. Порада, яку мені дали, - завжди переробити на шар з найнижчою роздільною здатністю перед тим, як проводити будь-який аналіз, але це здається мені величезною тратою точності, і мені ніколи не було дано чіткого пояснення, чому це потрібно робити.

Коли обґрунтовано повторно проводити вибірку, щоб відповідати сітці з більшою роздільною здатністю і які наслідки у порівнянні з перекомпонуванням на нижчу роздільну здатність?

Я розумію, що це, ймовірно, дуже залежить від ситуації. Я в основному шукаю загальні рекомендації, але ось мій конкретний сценарій для довідок:

Сценарій: Я хочу побудувати модель просторової регресії, яка передбачає використання земель на основі різноманітних екологічних та соціально-економічних шарів. Моя карта землекористування походить від Ландсату і, отже, дорівнює 30м. Приклади пояснювальних шарів включають DEM SRTM (3 дуги секунди, ~ 90 м) та кліматичні шари Bioclim (30 дугових секунд, ~ 1 км).


1
Чи можете ви надати додаткову інформацію про регресійну модель та спосіб реалізації? +1 за добре сконструйоване цікаве запитання!
Аарон

Я порівнюю лісовий покрив у два моменти часу та використовую логістичну модель регресії з (бінарною) ймовірністю вирубки лісів як мою відповідь. Я реалізую це в Р.
Мтт СМ

Відповіді:


17

Насправді це не все залежить від ситуації, і все стосується статистичної помилки.

Кожен раз, коли ви перепробовуєте з більш високою роздільною здатністю, ви вводите помилкову точність. Розглянемо набір даних, виміряних лише в футах за цілими числами. Будь-яка дана точка може бути на відстані +/- 0,5 фута від її фактичного місця розташування. Якщо ви повторно подаєте вибірку до найближчої десятої частини, тепер ви говорите, що будь-яке задане число не більше +/- 0,1 від його фактичного місцезнаходження. Але ви знаєте, що ваші початкові вимірювання були не такими точними, і тепер ви працюєте в межах помилки. Однак якщо ви підете іншим способом і повторно застосуєте до нижчої роздільної здатності, ви знаєте, що будь-яке задане значення точки, безумовно, є точним, оскільки воно міститься в межах більшої похибки вибірки.

Поза статистичної математики, перше місце, що це спадає на думку, - це в геодезичних дослідженнях. У старих обстеженнях вказані лише підшипники до найближчої півхвилини та відстані до десятої частини футу. Накреслення граничного переходу за допомогою цих вимірювань часто може призвести до неправильного розкриття (початкова точка і кінцева точка повинні бути однаковими, але не повинні) вимірюватися в футах. Сучасні огляди йдуть як мінімум до найближчої секунди та до кінця стопи. Отримані значення (наприклад, велика площа) можуть значно впливати на різницю в точності. Саме похідне значення також може бути надано як надмірно точне.

У вашому випадку аналізу, якщо ви повторно застосовуєте до більш високої роздільної здатності, ваші результати означатимуть набагато більшу точність, ніж дані, на яких вони ґрунтуються. Розгляньте свій SRTM на 90м. За яким би способом вони не вимірювали висоту (середня / максимальна / середня віддача), найменша одиниця (піксель), яку можна відрізнити від сусідів, становить 90м. Якщо ви повторно впорядкуєте це на 30 м, виконайте такі дії:

  • ви припускаєте, що всі дев'ять отриманих пікселів є тією ж висотою, коли насправді, можливо, лише один - центр, або лівий верхній - (або жоден!)
  • Ви інтерполюєте між пікселями, створюючи похідні значення, які раніше не були

Таким чином, в обох випадках ви вводите помилкову точність, оскільки ваші нові підпроби насправді не були виміряні.

Пов'язане запитання: Які практики існують для моделювання придатності земель?


Це, безумовно, стосується точкових даних. Але мені цікаво, чи відрізняється він від растрових даних, що в середньому постійно змінюється просторова кількість, де є точність розташування та точність вимірюваної кількості. Крім того, різні величини мають різний рівень просторової варіації. Наприклад, перекомпонування даних висот на більш високу роздільну здатність повинно ввести більше помилок у гірських районах, ніж прерій.
Метт СМ

@MattSM Це правда для всіх просторових даних і ускладнюється статистичною похибкою вимірюваної величини. Розгляньте свій SRTM на 90м. За яким би способом вони не вимірювали висоту (середня / максимальна / середня віддача), найменша одиниця (піксель), яку можна відрізнити від сусідів, становить 90м. Якщо ви повторно проаналізуєте це на 30 м, тепер ви говорите, що всі 9 пікселів, що виникають, є тією ж висотою, коли, правда, може бути лише один (або жоден!) - центр або лівий верхній край. Або ви інтерполюєте між пікселями, створюючи значення, недоступні раніше, таким чином, хибну точність. І так, діапазон значень відтворює потенційну помилку.
Кріс Ш

Так само, як бічна примітка, можна інтерполювати конкретні особливості в особливих випадках, коли візерунок чітко обмежений - одна, негеографічна, особливість, яка спадає на думку, - це реконструкція інформації номерного знака з фотографій, що є занадто низькою роздільною здатністю для читання. Але ви мусите знати, на що ви дивитесь, я пригадую деякі випадки, коли реконструкція номерного знака не вдалася, тому що зазначена табличка була неевропейським сценарієм, наприклад арабською.
Стів Барнс

Що з растрами з роздільною здатністю на основі дуги, чи не мають вони сітки комірок, які можуть бути різними областями / співвідношеннями сторін у різних областях?
CMCDragonkai

@CMCDragonkai Я не впевнений, як це вирішити, оскільки ви потрапляєте у представлення даних щодо формату та координатних систем / проекцій. Так, географічна область в растрі не обов'язково є такою ж рівномірною, як квадратні (або інші співвідношення сторін) пікселів. Про це скажуть багато специфікацій даних Sat (піксель x у nadir, а y у нижньому краї). Але проблеми з перекомпонування все ще застосовуються - якщо що-небудь, це просто ускладнює проблему. (І вибачте за затримку, я вже не був у SE на деякий час.)
Кріс Ш
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.