Інвертування матриці 4x4


86

Я шукаю зразок реалізації коду про те, як інвертувати матрицю 4x4. Я знаю, що існує гауссова елемініація, декомпозиція LU тощо, але замість того, щоб детально розглядати їх, я справді просто шукаю код для цього.

Мова в ідеалі - C ++, дані доступні в масиві з 16 плаваючих значень у порядку основного стовпця.


3
Це домашнє завдання? Якщо ні (наприклад, ви просто намагаєтеся вирішити Ax = b), то намагання явно обчислити обернене може бути не тим, що ви хочете зробити.
Тім Уіткомб

9
це не домашнє завдання. це для особистого проекту. і я не хочу "витрачати" час на вивчення інверсії матриці для 4x4, що здається досить складним порівняно з 3x3
затискач

10
Я не думаю, що це дурне питання, яке заслуговує -1 бал.
stribika

3
якщо ваша матриця є обертання / масштабування / переклад один, пов'язані з : stackoverflow.com/questions/155670 / ... & web.archive.org/web/20130806093214/http: // ...

вас це може також зацікавити, якщо ви хочете трохи більше продуктивності lxjk.github.io/2017/09/03/… і ви не можете одночасно обробляти кілька матриць
Сопель,

Відповіді:


106

тут:

bool gluInvertMatrix(const double m[16], double invOut[16])
{
    double inv[16], det;
    int i;

    inv[0] = m[5]  * m[10] * m[15] - 
             m[5]  * m[11] * m[14] - 
             m[9]  * m[6]  * m[15] + 
             m[9]  * m[7]  * m[14] +
             m[13] * m[6]  * m[11] - 
             m[13] * m[7]  * m[10];

    inv[4] = -m[4]  * m[10] * m[15] + 
              m[4]  * m[11] * m[14] + 
              m[8]  * m[6]  * m[15] - 
              m[8]  * m[7]  * m[14] - 
              m[12] * m[6]  * m[11] + 
              m[12] * m[7]  * m[10];

    inv[8] = m[4]  * m[9] * m[15] - 
             m[4]  * m[11] * m[13] - 
             m[8]  * m[5] * m[15] + 
             m[8]  * m[7] * m[13] + 
             m[12] * m[5] * m[11] - 
             m[12] * m[7] * m[9];

    inv[12] = -m[4]  * m[9] * m[14] + 
               m[4]  * m[10] * m[13] +
               m[8]  * m[5] * m[14] - 
               m[8]  * m[6] * m[13] - 
               m[12] * m[5] * m[10] + 
               m[12] * m[6] * m[9];

    inv[1] = -m[1]  * m[10] * m[15] + 
              m[1]  * m[11] * m[14] + 
              m[9]  * m[2] * m[15] - 
              m[9]  * m[3] * m[14] - 
              m[13] * m[2] * m[11] + 
              m[13] * m[3] * m[10];

    inv[5] = m[0]  * m[10] * m[15] - 
             m[0]  * m[11] * m[14] - 
             m[8]  * m[2] * m[15] + 
             m[8]  * m[3] * m[14] + 
             m[12] * m[2] * m[11] - 
             m[12] * m[3] * m[10];

    inv[9] = -m[0]  * m[9] * m[15] + 
              m[0]  * m[11] * m[13] + 
              m[8]  * m[1] * m[15] - 
              m[8]  * m[3] * m[13] - 
              m[12] * m[1] * m[11] + 
              m[12] * m[3] * m[9];

    inv[13] = m[0]  * m[9] * m[14] - 
              m[0]  * m[10] * m[13] - 
              m[8]  * m[1] * m[14] + 
              m[8]  * m[2] * m[13] + 
              m[12] * m[1] * m[10] - 
              m[12] * m[2] * m[9];

    inv[2] = m[1]  * m[6] * m[15] - 
             m[1]  * m[7] * m[14] - 
             m[5]  * m[2] * m[15] + 
             m[5]  * m[3] * m[14] + 
             m[13] * m[2] * m[7] - 
             m[13] * m[3] * m[6];

    inv[6] = -m[0]  * m[6] * m[15] + 
              m[0]  * m[7] * m[14] + 
              m[4]  * m[2] * m[15] - 
              m[4]  * m[3] * m[14] - 
              m[12] * m[2] * m[7] + 
              m[12] * m[3] * m[6];

    inv[10] = m[0]  * m[5] * m[15] - 
              m[0]  * m[7] * m[13] - 
              m[4]  * m[1] * m[15] + 
              m[4]  * m[3] * m[13] + 
              m[12] * m[1] * m[7] - 
              m[12] * m[3] * m[5];

    inv[14] = -m[0]  * m[5] * m[14] + 
               m[0]  * m[6] * m[13] + 
               m[4]  * m[1] * m[14] - 
               m[4]  * m[2] * m[13] - 
               m[12] * m[1] * m[6] + 
               m[12] * m[2] * m[5];

    inv[3] = -m[1] * m[6] * m[11] + 
              m[1] * m[7] * m[10] + 
              m[5] * m[2] * m[11] - 
              m[5] * m[3] * m[10] - 
              m[9] * m[2] * m[7] + 
              m[9] * m[3] * m[6];

    inv[7] = m[0] * m[6] * m[11] - 
             m[0] * m[7] * m[10] - 
             m[4] * m[2] * m[11] + 
             m[4] * m[3] * m[10] + 
             m[8] * m[2] * m[7] - 
             m[8] * m[3] * m[6];

    inv[11] = -m[0] * m[5] * m[11] + 
               m[0] * m[7] * m[9] + 
               m[4] * m[1] * m[11] - 
               m[4] * m[3] * m[9] - 
               m[8] * m[1] * m[7] + 
               m[8] * m[3] * m[5];

    inv[15] = m[0] * m[5] * m[10] - 
              m[0] * m[6] * m[9] - 
              m[4] * m[1] * m[10] + 
              m[4] * m[2] * m[9] + 
              m[8] * m[1] * m[6] - 
              m[8] * m[2] * m[5];

    det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];

    if (det == 0)
        return false;

    det = 1.0 / det;

    for (i = 0; i < 16; i++)
        invOut[i] = inv[i] * det;

    return true;
}

Це було знято з реалізації MESA бібліотеки GLU.


8
Ви, мабуть, не хотіли б цього по-іншому.
shoosh

2
Да я б. Компілятори цілком здатні розгортати цикли, особливо коли ви це наказали.
Імажист

38
На жаль, цей код насправді не настільки простий, щоб його можна було зробити спочатку, а тим більше спосіб, який компілятор може адекватно розгорнути. Крім того, цей код походить із досить старої бібліотеки C, яка має БАГАТО дуже прискіпливих оптимізацій, і це код, який вже працює (і був ретельно перевірений і перевірений тисячами програм Linux OpenGL на даний момент), то навіщо його переписувати?
пухнастий

14
Це для впорядкованих матриць основних стовпців чи рядків?
Zoomulator

34
Zoomulator: Дивовижно, це для обох! Це тому, що inverse (transpose (A)) = transpose (inverse (A)).
Timmmm

18

Якщо хтось шукає більш костюмований код і "легший для читання", то я зрозумів це

var A2323 = m.m22 * m.m33 - m.m23 * m.m32 ;
var A1323 = m.m21 * m.m33 - m.m23 * m.m31 ;
var A1223 = m.m21 * m.m32 - m.m22 * m.m31 ;
var A0323 = m.m20 * m.m33 - m.m23 * m.m30 ;
var A0223 = m.m20 * m.m32 - m.m22 * m.m30 ;
var A0123 = m.m20 * m.m31 - m.m21 * m.m30 ;
var A2313 = m.m12 * m.m33 - m.m13 * m.m32 ;
var A1313 = m.m11 * m.m33 - m.m13 * m.m31 ;
var A1213 = m.m11 * m.m32 - m.m12 * m.m31 ;
var A2312 = m.m12 * m.m23 - m.m13 * m.m22 ;
var A1312 = m.m11 * m.m23 - m.m13 * m.m21 ;
var A1212 = m.m11 * m.m22 - m.m12 * m.m21 ;
var A0313 = m.m10 * m.m33 - m.m13 * m.m30 ;
var A0213 = m.m10 * m.m32 - m.m12 * m.m30 ;
var A0312 = m.m10 * m.m23 - m.m13 * m.m20 ;
var A0212 = m.m10 * m.m22 - m.m12 * m.m20 ;
var A0113 = m.m10 * m.m31 - m.m11 * m.m30 ;
var A0112 = m.m10 * m.m21 - m.m11 * m.m20 ;

var det = m.m00 * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ) 
    - m.m01 * ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ) 
    + m.m02 * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ) 
    - m.m03 * ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ) ;
det = 1 / det;

return new Matrix4x4() {
   m00 = det *   ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ),
   m01 = det * - ( m.m01 * A2323 - m.m02 * A1323 + m.m03 * A1223 ),
   m02 = det *   ( m.m01 * A2313 - m.m02 * A1313 + m.m03 * A1213 ),
   m03 = det * - ( m.m01 * A2312 - m.m02 * A1312 + m.m03 * A1212 ),
   m10 = det * - ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ),
   m11 = det *   ( m.m00 * A2323 - m.m02 * A0323 + m.m03 * A0223 ),
   m12 = det * - ( m.m00 * A2313 - m.m02 * A0313 + m.m03 * A0213 ),
   m13 = det *   ( m.m00 * A2312 - m.m02 * A0312 + m.m03 * A0212 ),
   m20 = det *   ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ),
   m21 = det * - ( m.m00 * A1323 - m.m01 * A0323 + m.m03 * A0123 ),
   m22 = det *   ( m.m00 * A1313 - m.m01 * A0313 + m.m03 * A0113 ),
   m23 = det * - ( m.m00 * A1312 - m.m01 * A0312 + m.m03 * A0112 ),
   m30 = det * - ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ),
   m31 = det *   ( m.m00 * A1223 - m.m01 * A0223 + m.m02 * A0123 ),
   m32 = det * - ( m.m00 * A1213 - m.m01 * A0213 + m.m02 * A0113 ),
   m33 = det *   ( m.m00 * A1212 - m.m01 * A0212 + m.m02 * A0112 ),
};

Я не пишу код, але моя програма написала. Я створив невелику програму, щоб скласти програму, яка обчислює детермінант і обернену до будь-якої N-матриці.

Я роблю це тому, що колись у минулому мені потрібен код, який інвертує матрицю 5x5, але ніхто на землі цього не робив, тому я створив його.

Погляньте на програму тут .

РЕДАКТУВАТИ: Розмітка матриці є рядковою (тобто m01в першому рядку та другому стовпці). Також мовою є C #, але її легко перетворити на C.


3
116 множення з плаваючою системою порівняно з 200 для прийнятої відповіді. (і перевірка детермінанта перед виконанням більшості розрахунків)
paddyg

2
Ця відповідь відчувається як дар від Бога. Ви навіть використовуєте ту саму норму іменування елементів матриці, що і я.
Stuntddude

Дійсно хороша відповідь, але щодо цього "Мені потрібен код, який інвертує матрицю 5x5, але ніхто на землі цього не робив" --- Причина тому, мабуть, в тому, що дешевше використовувати прямий розв'язувач (Gauss, LU) ніж використання формули на основі детермінант (правило Крамера?).
wychmaster

6

Якщо вам потрібна бібліотека матриць C ++ з великою кількістю функцій, перегляньте бібліотеку Eigen - http://eigen.tuxfamily.org


6

Я "згорнув" реалізацію MESA (також написав пару модульних тестів, щоб переконатися, що вона насправді працює).

Тут:

float invf(int i,int j,const float* m){

    int o = 2+(j-i);

    i += 4+o;
    j += 4-o;

    #define e(a,b) m[ ((j+b)%4)*4 + ((i+a)%4) ]

    float inv =
     + e(+1,-1)*e(+0,+0)*e(-1,+1)
     + e(+1,+1)*e(+0,-1)*e(-1,+0)
     + e(-1,-1)*e(+1,+0)*e(+0,+1)
     - e(-1,-1)*e(+0,+0)*e(+1,+1)
     - e(-1,+1)*e(+0,-1)*e(+1,+0)
     - e(+1,-1)*e(-1,+0)*e(+0,+1);

    return (o%2)?inv : -inv;

    #undef e

}

bool inverseMatrix4x4(const float *m, float *out)
{

    float inv[16];

    for(int i=0;i<4;i++)
        for(int j=0;j<4;j++)
            inv[j*4+i] = invf(i,j,m);

    double D = 0;

    for(int k=0;k<4;k++) D += m[k] * inv[k*4];

    if (D == 0) return false;

    D = 1.0 / D;

    for (int i = 0; i < 16; i++)
        out[i] = inv[i] * D;

    return true;

}

Я трохи писав про це та відображаю схему позитивних / негативних факторів у своєму блозі .

Як запропонував @LiraNuna, на багатьох платформах доступні апаратно-прискорені версії таких підпрограм, тому я радий мати `` резервну версію '', яку можна прочитати та коротко.

Примітка : це може працювати в 3,5 рази повільніше або гірше, ніж впровадження MESA. Ви можете змінити схему факторів, щоб видалити деякі доповнення тощо ... але це втратить у читабельності і все одно буде не дуже швидким.



1

Ось невеличка (лише один заголовок) векторна математична бібліотека C ++ (орієнтована на тривимірне програмування). Якщо ви використовуєте його, майте на увазі, що розміщення його матриць в пам'яті перевернуте порівняно з тим, що очікує OpenGL, я весело провев час, розгадуючи це ...


1

Натхненний @shoosh, щоб перевірити реалізації MESA, я виявив, що інверсія матриці виглядає зовсім інакше в останніх версіях Mesa. Я думаю, це хороші вдосконалення. Ось код інверсії матриці з Mesa-17.3.9 :

/* Returns true for success, false for failure (singular matrix) */
bool DirectVolumeRenderer::_mesa_invert_matrix_general( GLfloat out[16], const GLfloat in[16] )
{
    /**
     * References an element of 4x4 matrix.
     * Calculate the linear storage index of the element and references it. 
     */
    #define MAT(m,r,c) (m)[(c)*4+(r)]
    /**
     * Swaps the values of two floating point variables.
     */
    #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }

    const GLfloat *m = in;
    GLfloat wtmp[4][8];
    GLfloat m0, m1, m2, m3, s;
    GLfloat *r0, *r1, *r2, *r3;

    r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];

    r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
    r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
    r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,

    r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
    r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
    r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,

    r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
    r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
    r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,

    r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
    r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
    r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;

    /* choose pivot - or die */
    if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
    if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
    if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
    if (0.0F == r0[0])
        return false;

    /* eliminate first variable     */
    m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
    s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
    s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
    s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
    s = r0[4];
    if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
    s = r0[5];
    if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
    s = r0[6];
    if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
    s = r0[7];
    if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }

    /* choose pivot - or die */
    if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
    if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
    if (0.0F == r1[1])
        return false;

    /* eliminate second variable */
    m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
    r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
    r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
    s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
    s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
    s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
    s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }

    /* choose pivot - or die */
    if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
    if (0.0F == r2[2])
        return false;

    /* eliminate third variable */
    m3 = r3[2]/r2[2];
    r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
    r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
    r3[7] -= m3 * r2[7];

    /* last check */
    if (0.0F == r3[3])
        return false;

    s = 1.0F/r3[3];             /* now back substitute row 3 */
    r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;

    m2 = r2[3];                 /* now back substitute row 2 */
    s  = 1.0F/r2[2];
    r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
    r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
    m1 = r1[3];
    r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
    r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
    m0 = r0[3];
    r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
    r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;

    m1 = r1[2];                 /* now back substitute row 1 */
    s  = 1.0F/r1[1];
    r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
    r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
    m0 = r0[2];
    r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
    r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;

    m0 = r0[1];                 /* now back substitute row 0 */
    s  = 1.0F/r0[0];
    r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
    r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);

    MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
    MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
    MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
    MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
    MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
    MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
    MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
    MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];

    #undef SWAP_ROWS
    #undef MAT

    return true;
}

Примітка: Ви можете знайти цей шматок коду в кодової базі меза: mesa-17.3.9/src/mesa/math/m_matrix.c.


1

Це версія C ++ для відповіді @ willnode

static inline void InvertMatrix4(const Matrix& m, Matrix& im, double& det)
{
    double A2323 = m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2);
    double A1323 = m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1);
    double A1223 = m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1);
    double A0323 = m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0);
    double A0223 = m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0);
    double A0123 = m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0);
    double A2313 = m(1, 2) * m(3, 3) - m(1, 3) * m(3, 2);
    double A1313 = m(1, 1) * m(3, 3) - m(1, 3) * m(3, 1);
    double A1213 = m(1, 1) * m(3, 2) - m(1, 2) * m(3, 1);
    double A2312 = m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2);
    double A1312 = m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1);
    double A1212 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
    double A0313 = m(1, 0) * m(3, 3) - m(1, 3) * m(3, 0);
    double A0213 = m(1, 0) * m(3, 2) - m(1, 2) * m(3, 0);
    double A0312 = m(1, 0) * m(2, 3) - m(1, 3) * m(2, 0);
    double A0212 = m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0);
    double A0113 = m(1, 0) * m(3, 1) - m(1, 1) * m(3, 0);
    double A0112 = m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0);

    det = m(0, 0) * ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 )
        - m(0, 1) * ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 )
        + m(0, 2) * ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 )
        - m(0, 3) * ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
    det = 1 / det;

    im(0, 0) = det *   ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 );
    im(0, 1) = det * - ( m(0, 1) * A2323 - m(0, 2) * A1323 + m(0, 3) * A1223 );
    im(0, 2) = det *   ( m(0, 1) * A2313 - m(0, 2) * A1313 + m(0, 3) * A1213 );
    im(0, 3) = det * - ( m(0, 1) * A2312 - m(0, 2) * A1312 + m(0, 3) * A1212 );
    im(1, 0) = det * - ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 );
    im(1, 1) = det *   ( m(0, 0) * A2323 - m(0, 2) * A0323 + m(0, 3) * A0223 );
    im(1, 2) = det * - ( m(0, 0) * A2313 - m(0, 2) * A0313 + m(0, 3) * A0213 );
    im(1, 3) = det *   ( m(0, 0) * A2312 - m(0, 2) * A0312 + m(0, 3) * A0212 );
    im(2, 0) = det *   ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 );
    im(2, 1) = det * - ( m(0, 0) * A1323 - m(0, 1) * A0323 + m(0, 3) * A0123 );
    im(2, 2) = det *   ( m(0, 0) * A1313 - m(0, 1) * A0313 + m(0, 3) * A0113 );
    im(2, 3) = det * - ( m(0, 0) * A1312 - m(0, 1) * A0312 + m(0, 3) * A0112 );
    im(3, 0) = det * - ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
    im(3, 1) = det *   ( m(0, 0) * A1223 - m(0, 1) * A0223 + m(0, 2) * A0123 );
    im(3, 2) = det * - ( m(0, 0) * A1213 - m(0, 1) * A0213 + m(0, 2) * A0113 );
    im(3, 3) = det *   ( m(0, 0) * A1212 - m(0, 1) * A0212 + m(0, 2) * A0112 );
}

0

Ви можете зробити це швидше за цим блогом .

#define SUBP(i,j) input[i][j]
#define SUBQ(i,j) input[i][2+j]
#define SUBR(i,j) input[2+i][j]
#define SUBS(i,j) input[2+i][2+j]

#define OUTP(i,j) output[i][j]
#define OUTQ(i,j) output[i][2+j]
#define OUTR(i,j) output[2+i][j]
#define OUTS(i,j) output[2+i][2+j]

#define INVP(i,j) invP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVP(i,j) RinvP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVPQ(i,j) RinvPQ[i][j]
#define INVPQR(i,j) invPQR[i][j]
#define INVS(i,j) invS[i][j]

#define MULTI(MAT1, MAT2, MAT3) \
    MAT3(0,0)=MAT1(0,0)*MAT2(0,0) + MAT1(0,1)*MAT2(1,0); \
MAT3(0,1)=MAT1(0,0)*MAT2(0,1) + MAT1(0,1)*MAT2(1,1); \
MAT3(1,0)=MAT1(1,0)*MAT2(0,0) + MAT1(1,1)*MAT2(1,0); \
MAT3(1,1)=MAT1(1,0)*MAT2(0,1) + MAT1(1,1)*MAT2(1,1);

#define INV(MAT1, MAT2) \
    _det = 1.0 / (MAT1(0,0) * MAT1(1,1) - MAT1(0,1) * MAT1(1,0)); \
MAT2(0,0) = MAT1(1,1) * _det; \
MAT2(1,1) = MAT1(0,0) * _det; \
MAT2(0,1) = -MAT1(0,1) * _det; \
MAT2(1,0) = -MAT1(1,0) * _det; \

#define SUBTRACT(MAT1, MAT2, MAT3) \
    MAT3(0,0)=MAT1(0,0) - MAT2(0,0); \
MAT3(0,1)=MAT1(0,1) - MAT2(0,1); \
MAT3(1,0)=MAT1(1,0) - MAT2(1,0); \
MAT3(1,1)=MAT1(1,1) - MAT2(1,1);

#define NEGATIVE(MAT) \
    MAT(0,0)=-MAT(0,0); \
MAT(0,1)=-MAT(0,1); \
MAT(1,0)=-MAT(1,0); \
MAT(1,1)=-MAT(1,1);


void getInvertMatrix(complex<double> input[4][4], complex<double> output[4][4]) {
    complex<double> _det;
    complex<double> invP[2][2];
    complex<double> invPQ[2][2];
    complex<double> RinvP[2][2];
    complex<double> RinvPQ[2][2];
    complex<double> invPQR[2][2];
    complex<double> invS[2][2];


    INV(SUBP, INVP);
    MULTI(SUBR, INVP, RINVP);
    MULTI(INVP, SUBQ, INVPQ);
    MULTI(RINVP, SUBQ, RINVPQ);
    SUBTRACT(SUBS, RINVPQ, INVS);
    INV(INVS, OUTS);
    NEGATIVE(OUTS);
    MULTI(OUTS, RINVP, OUTR);
    MULTI(INVPQ, OUTS, OUTQ);
    MULTI(INVPQ, OUTR, INVPQR);
    SUBTRACT(INVP, INVPQR, OUTP);
}

Це не повна реалізація, оскільки P може не бути інвертованою, але ви можете поєднати цей код з реалізацією MESA, щоб отримати кращу продуктивність.


0

Якщо ви хочете обчислити зворотну матрицю матриці 4x4, то я рекомендую скористатися такою бібліотекою, як OpenGL Mathematics (GLM) :

У будь-якому випадку, ви можете зробити це з нуля. Наступна реалізація схожа на реалізацію glm::inverse, але вона не така оптимізована:

bool InverseMat44( const GLfloat m[16], GLfloat invOut[16] )
{
    float inv[16], det;
    int i;

    inv[0]  =  m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
    inv[4]  = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
    inv[8]  =  m[4] * m[9]  * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
    inv[12] = -m[4] * m[9]  * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
    inv[1]  = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
    inv[5]  =  m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
    inv[9]  = -m[0] * m[9]  * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
    inv[13] =  m[0] * m[9]  * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
    inv[2]  =  m[1] * m[6]  * m[15] - m[1] * m[7]  * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7]  - m[13] * m[3] * m[6];
    inv[6]  = -m[0] * m[6]  * m[15] + m[0] * m[7]  * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7]  + m[12] * m[3] * m[6];
    inv[10] =  m[0] * m[5]  * m[15] - m[0] * m[7]  * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7]  - m[12] * m[3] * m[5];
    inv[14] = -m[0] * m[5]  * m[14] + m[0] * m[6]  * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6]  + m[12] * m[2] * m[5];
    inv[3]  = -m[1] * m[6]  * m[11] + m[1] * m[7]  * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9]  * m[2] * m[7]  + m[9]  * m[3] * m[6];
    inv[7]  =  m[0] * m[6]  * m[11] - m[0] * m[7]  * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8]  * m[2] * m[7]  - m[8]  * m[3] * m[6];
    inv[11] = -m[0] * m[5]  * m[11] + m[0] * m[7]  * m[9]  + m[4] * m[1] * m[11] - m[4] * m[3] * m[9]  - m[8]  * m[1] * m[7]  + m[8]  * m[3] * m[5];
    inv[15] =  m[0] * m[5]  * m[10] - m[0] * m[6]  * m[9]  - m[4] * m[1] * m[10] + m[4] * m[2] * m[9]  + m[8]  * m[1] * m[6]  - m[8]  * m[2] * m[5];

    det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
    if (det == 0) return false;
    det = 1.0 / det;

    for (i = 0; i < 16; i++)
        invOut[i] = inv[i] * det;

    return true;
}
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.