Це старіший потік, але я просто хотів залишити тут своє рішення для обходу. Спочатку я спробувавchunksize
параметр (навіть із досить малими значеннями, як 10000), але це мало допомогло; все ще мали технічні проблеми з обсягом пам'яті (мій CSV становив ~ 7,5 Гб).
Зараз я просто читаю фрагменти файлів CSV у підході for-loop і додаю їх, наприклад, до бази даних SQLite поетапно:
import pandas as pd
import sqlite3
from pandas.io import sql
import subprocess
# In and output file paths
in_csv = '../data/my_large.csv'
out_sqlite = '../data/my.sqlite'
table_name = 'my_table' # name for the SQLite database table
chunksize = 100000 # number of lines to process at each iteration
# columns that should be read from the CSV file
columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles']
# Get number of lines in the CSV file
nlines = subprocess.check_output('wc -l %s' % in_csv, shell=True)
nlines = int(nlines.split()[0])
# connect to database
cnx = sqlite3.connect(out_sqlite)
# Iteratively read CSV and dump lines into the SQLite table
for i in range(0, nlines, chunksize):
df = pd.read_csv(in_csv,
header=None, # no header, define column header manually later
nrows=chunksize, # number of rows to read at each iteration
skiprows=i) # skip rows that were already read
# columns to read
df.columns = columns
sql.to_sql(df,
name=table_name,
con=cnx,
index=False, # don't use CSV file index
index_label='molecule_id', # use a unique column from DataFrame as index
if_exists='append')
cnx.close()