Який найефективніший спосіб створити словник з двох стовпців колонок Dataframe?


136

Який найефективніший спосіб організації наступних панд Dataframe:

дані =

Position    Letter
1           a
2           b
3           c
4           d
5           e

в словник, як alphabet[1 : 'a', 2 : 'b', 3 : 'c', 4 : 'd', 5 : 'e']?

Відповіді:


182
In [9]: pd.Series(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}

Порівняння швидкості (за методом Вутера)

In [6]: df = pd.DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))

In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loop

In [8]: %timeit pd.Series(df.A.values,index=df.B).to_dict()
1000 loops, best of 3: 987 us per loop

20
Без створення першої серії ... dict (zip (df.Position, df.Letter))
Wouter Overmeire

1
FYI ..... мій метод дуже близький до витяжки щодо того, що робить Wouter, відмінність полягає в тому, що він реалізується з використанням izip, а не zip; Я думаю, що генератор робить різницю, я здогадуюсь
Джефф

1
@WouterOvermeire прекрасно працює у моїй програмі, дякую за ваш внесок
user1083734

3
@Jeff dict (zip ...) найшвидший
Wouter Overmeire

3
У DataFrame з form = (100,2) метод Вутера з dict (zip ...) був в 3 рази швидшим, ніж у Джеффа - я використовував% timeit
Quetzalcoatl

79

Я знайшов більш швидкий спосіб вирішити проблему, принаймні на реально великих наборах даних, використовуючи: df.set_index(KEY).to_dict()[VALUE]

Доказ на 50 000 рядків:

df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)

%timeit dict(zip(df.A,df.B))
%timeit pd.Series(df.A.values,index=df.B).to_dict()
%timeit df.set_index('A').to_dict()['B']

Вихід:

100 loops, best of 3: 7.04 ms per loop  # WouterOvermeire
100 loops, best of 3: 9.83 ms per loop  # Jeff
100 loops, best of 3: 4.28 ms per loop  # Kikohs (me)

18
Завжди прокручуйте вниз для можливих швидших відповідей!
Nour Wolf

5

У Python 3.6 найшвидшим способом все ще є WouterOvermeire. Пропозиція Кікоса повільніше, ніж інші два варіанти.

import timeit

setup = '''
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)
'''

timeit.Timer('dict(zip(df.A,df.B))', setup=setup).repeat(7,500)
timeit.Timer('pd.Series(df.A.values,index=df.B).to_dict()', setup=setup).repeat(7,500)
timeit.Timer('df.set_index("A").to_dict()["B"]', setup=setup).repeat(7,500)

Результати:

1.1214002349999777 s  # WouterOvermeire
1.1922008498571748 s  # Jeff
1.7034366211428602 s  # Kikohs

4

TL; DR

>>> import pandas as pd
>>> df = pd.DataFrame({'Position':[1,2,3,4,5], 'Letter':['a', 'b', 'c', 'd', 'e']})
>>> dict(sorted(df.values.tolist())) # Sort of sorted... 
{'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
>>> from collections import OrderedDict
>>> OrderedDict(df.values.tolist())
OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)])

В Довгий

Пояснення рішення: dict(sorted(df.values.tolist()))

Подано:

df = pd.DataFrame({'Position':[1,2,3,4,5], 'Letter':['a', 'b', 'c', 'd', 'e']})

[вихід]:

 Letter Position
0   a   1
1   b   2
2   c   3
3   d   4
4   e   5

Спробуйте:

# Get the values out to a 2-D numpy array, 
df.values

[вихід]:

array([['a', 1],
       ['b', 2],
       ['c', 3],
       ['d', 4],
       ['e', 5]], dtype=object)

Потім необов'язково:

# Dump it into a list so that you can sort it using `sorted()`
sorted(df.values.tolist()) # Sort by key

Або:

# Sort by value:
from operator import itemgetter
sorted(df.values.tolist(), key=itemgetter(1))

[вихід]:

[['a', 1], ['b', 2], ['c', 3], ['d', 4], ['e', 5]]

Нарешті, перелийте список списку з 2-х елементів у диктат.

dict(sorted(df.values.tolist())) 

[вихід]:

{'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}

Пов'язані

Відповідь на коментар @sbradbio:

Якщо для певного ключа є кілька значень, і ви хочете зберегти їх усі, це не найефективніший, але найбільш інтуїтивний спосіб:

from collections import defaultdict
import pandas as pd

multivalue_dict = defaultdict(list)

df = pd.DataFrame({'Position':[1,2,4,4,4], 'Letter':['a', 'b', 'd', 'e', 'f']})

for idx,row in df.iterrows():
    multivalue_dict[row['Position']].append(row['Letter'])

[вихід]:

>>> print(multivalue_dict)
defaultdict(list, {1: ['a'], 2: ['b'], 4: ['d', 'e', 'f']})

Чи є спосіб, як ви можете додати більше ніж один стовпець як значення{'key': [value1, value2]}
sbradbio

1
Перевірити
додану

Я думаю, що value1 та value2 - це два окремі стовпці. Чи можете ви створити словник за допомогою {'id': ['long', 'lat]}? long і lat знаходяться в окремих стовпцях.
kms
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.