ключові речі, які потрібно знати для операцій над масивами NumPy проти операцій на матрицях NumPy :
Матриця NumPy - це підклас масиву NumPy
Операції з масивом NumPy є елементарними (після того, як ведеться облік)
Матричні операції NumPy дотримуються звичайних правил лінійної алгебри
деякі фрагменти коду для ілюстрації:
>>> from numpy import linalg as LA
>>> import numpy as NP
>>> a1 = NP.matrix("4 3 5; 6 7 8; 1 3 13; 7 21 9")
>>> a1
matrix([[ 4, 3, 5],
[ 6, 7, 8],
[ 1, 3, 13],
[ 7, 21, 9]])
>>> a2 = NP.matrix("7 8 15; 5 3 11; 7 4 9; 6 15 4")
>>> a2
matrix([[ 7, 8, 15],
[ 5, 3, 11],
[ 7, 4, 9],
[ 6, 15, 4]])
>>> a1.shape
(4, 3)
>>> a2.shape
(4, 3)
>>> a2t = a2.T
>>> a2t.shape
(3, 4)
>>> a1 * a2t # same as NP.dot(a1, a2t)
matrix([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
але ця операція не вдається, якщо ці дві матриці NumPy перетворені в масиви:
>>> a1 = NP.array(a1)
>>> a2t = NP.array(a2t)
>>> a1 * a2t
Traceback (most recent call last):
File "<pyshell#277>", line 1, in <module>
a1 * a2t
ValueError: operands could not be broadcast together with shapes (4,3) (3,4)
хоча використання синтаксису NP.dot працює з масивами ; ця операція працює як матричне множення:
>> NP.dot(a1, a2t)
array([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
так що вам коли-небудь потрібна матриця NumPy? тобто чи вистачить масиву NumPy для лінійних обчислень алгебри (за умови, що ви знаєте правильний синтаксис, тобто NP.dot)?
правило здається, що якщо аргументи (масиви) мають форми (mxn), сумісні з заданою лінійною операцією алгебри, то ви все в порядку, інакше NumPy кидає.
Єдиний виняток, який я натрапив (є ймовірні інші) - обчислення матриці оберненою .
нижче - фрагменти, в яких я назвав чисту лінійну операцію з алгебри (насправді від модуля лінійної алгебри Numpy) і передав у масив NumPy
визначник масиву:
>>> m = NP.random.randint(0, 10, 16).reshape(4, 4)
>>> m
array([[6, 2, 5, 2],
[8, 5, 1, 6],
[5, 9, 7, 5],
[0, 5, 6, 7]])
>>> type(m)
<type 'numpy.ndarray'>
>>> md = LA.det(m)
>>> md
1772.9999999999995
власні вектори / власні параметри :
>>> LA.eig(m)
(array([ 19.703+0.j , 0.097+4.198j, 0.097-4.198j, 5.103+0.j ]),
array([[-0.374+0.j , -0.091+0.278j, -0.091-0.278j, -0.574+0.j ],
[-0.446+0.j , 0.671+0.j , 0.671+0.j , -0.084+0.j ],
[-0.654+0.j , -0.239-0.476j, -0.239+0.476j, -0.181+0.j ],
[-0.484+0.j , -0.387+0.178j, -0.387-0.178j, 0.794+0.j ]]))
норма матриці :
>>>> LA.norm(m)
22.0227
qr факторизація :
>>> LA.qr(a1)
(array([[ 0.5, 0.5, 0.5],
[ 0.5, 0.5, -0.5],
[ 0.5, -0.5, 0.5],
[ 0.5, -0.5, -0.5]]),
array([[ 6., 6., 6.],
[ 0., 0., 0.],
[ 0., 0., 0.]]))
ранг матриці :
>>> m = NP.random.rand(40).reshape(8, 5)
>>> m
array([[ 0.545, 0.459, 0.601, 0.34 , 0.778],
[ 0.799, 0.047, 0.699, 0.907, 0.381],
[ 0.004, 0.136, 0.819, 0.647, 0.892],
[ 0.062, 0.389, 0.183, 0.289, 0.809],
[ 0.539, 0.213, 0.805, 0.61 , 0.677],
[ 0.269, 0.071, 0.377, 0.25 , 0.692],
[ 0.274, 0.206, 0.655, 0.062, 0.229],
[ 0.397, 0.115, 0.083, 0.19 , 0.701]])
>>> LA.matrix_rank(m)
5
Умова матриці :
>>> a1 = NP.random.randint(1, 10, 12).reshape(4, 3)
>>> LA.cond(a1)
5.7093446189400954
для інверсії потрібна матриця NumPy:
>>> a1 = NP.matrix(a1)
>>> type(a1)
<class 'numpy.matrixlib.defmatrix.matrix'>
>>> a1.I
matrix([[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028]])
>>> a1 = NP.array(a1)
>>> a1.I
Traceback (most recent call last):
File "<pyshell#230>", line 1, in <module>
a1.I
AttributeError: 'numpy.ndarray' object has no attribute 'I'
але псевдоінверсія Мура-Пенроуза, здається, працює чудово
>>> LA.pinv(m)
matrix([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])
>>> m = NP.array(m)
>>> LA.pinv(m)
array([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])