Виклик продуктивності на C ++: перетворення на ціле число до std :: string


123

Чи може хтось перемогти продуктивність мого цілого std :: string коду, зв'язаний нижче?

Уже є кілька запитань, які пояснюють, як перетворити ціле число в ціле std::stringв C ++, наприклад, таке , але жодне із запропонованих рішень не є ефективним.

Ось готовий для компіляції код для деяких загальних методів, з якими можна конкурувати:

  • "Спосіб C ++", використовуючи streamstream: http://ideone.com/jh3Sa
  • sprintf, який звичайно рекомендують представники SOU для продуктивності: http://ideone.com/82kwR

Всупереч поширеній думці , boost::lexical_castмає власну реалізацію ( довідка ) та не використовує stringstreamоператорів чисельного вставки. Мені б дуже хотілося, щоб її продуктивність порівнювалася, тому що це інше питання говорить про те, що це жалюгідно .

І мій власний внесок, який є конкурентоспроможним на настільних комп’ютерах, і демонструє підхід, який працює на повній швидкості і в вбудованих системах, на відміну від алгоритмів, залежних від цілочислового модуля:

Якщо ви хочете скористатися цим кодом, я зроблю його доступним за спрощеною ліцензією BSD (комерційне використання дозволено, атрибуція потрібна). Просто запитаєте.

Нарешті, функція ltoaнестандартна, але широко доступна.

  • Версія ltoa для всіх, хто має компілятор, який надає її (ideone doesn’t): http://ideone.com/T5Wim

Незадовго я опублікую свої вимірювання ефективності як відповідь.

Правила алгоритмів

  • Надайте код для перетворення принаймні 32-бітових цілих чисел, підписаних та непідписаних, у десяткові.
  • Отримайте вихід як std::string.
  • Немає хитрощів, несумісних із нанизуванням різьби та сигналами (наприклад, статичні буфери).
  • Ви можете припустити набір символів ASCII.
  • Переконайтесь, що випробували свій код на INT_MINмашині доповнення двох, де абсолютне значення не є представним.
  • В ідеалі, висновок повинен бути символ через-символ збігається з канонічною версією C ++ з використанням stringstream, http://ideone.com/jh3Sa , але все , що явно зрозуміло , так як правильне число нормально теж.
  • НОВО : Хоча ви можете використовувати будь-які параметри компілятора та оптимізатора (за винятком повністю відключених) для порівняння, код також повинен компілювати та давати правильні результати принаймні за VC ++ 2010 та g ++.

Дискусія з надією

Крім кращих алгоритмів, я також хотів би отримати деякі орієнтири на декількох різних платформах та компіляторах (давайте використовувати пропускну здатність MB / s як нашу стандартну одиницю вимірювання). Я вважаю, що код мого алгоритму (я знаю, що sprintfорієнтир має деякі ярлики - тепер це виправлено) є чітко визначеною поведінкою стандартом, принаймні за припущенням ASCII, але якщо ви бачите якісь невизначені поведінки або входи, для яких вихід недійсний, вкажіть це.

Висновки:

Різні алгоритми працюють для g ++ та VC2010, ймовірно, через різні реалізації std::stringкожного з них. VC2010 чітко справляє кращу роботу з NRVO, позбавлення від дохідної вартості допомагає лише на gcc.

Було встановлено, що кодекс переважає sprintfна порядок. ostringstreamвідстає на коефіцієнт 50 і більше.

Переможець виклику - користувач434507, який виробляє код, який виконує 350% моєї власної швидкості на gcc. Подальші записи закриваються через капризи спільноти SO.

Діючими (фінальними?) Чемпіонами з швидкості є:


5
Я думаю, що це "питання" краще вписується сюди programmers.stackexchange.com
Juarrow

3
Ваша проблема не визначена, оскільки вона не пояснює, як має виглядати рядок результатів. Швидше за все, завжди повернення порожнього рядка не вважатиметься прийнятним, але відповідає відповідності специфікації.
Мартін проти Левіса

7
Я проголосував за повторне відкриття цього питання, немає причини його закриття.
Щеня

4
З цього питання посилання на ідеони переважно мертві. Будь ласка, включіть код десь надійніше?
nhahtdh

6
@BenVoigt Я б просив те саме. Посилання всі мертві. Мені б хотілося детальніше придивитись до цього
МАН

Відповіді:


33
#include <string>

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};


std::string& itostr(int n, std::string& s)
{
    if(n==0)
    {
        s="0";
        return s;
    }

    int sign = -(n<0);
    unsigned int val = (n^sign)-sign;

    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else
                size=1;
        }
    }
    size -= sign;
    s.resize(size);
    char* c = &s[0];
    if(sign)
        *c='-';

    c += size-1;
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    return s;
}

std::string& itostr(unsigned val, std::string& s)
{
    if(val==0)
    {
        s="0";
        return s;
    }

    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else
                size=1;
        }
    }

    s.resize(size);
    char* c = &s[size-1];
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    return s;
}

Це вибухне в системах, які забороняють несанкціонований доступ до пам'яті (у такому випадку, перше незрівняне призначення через *(short*)викликає сегментацію), але в іншому випадку воно має працювати дуже добре.

Одне важливе, що потрібно зробити, це мінімізувати використання std::string. (Іронічно, я знаю.) У Visual Studio, наприклад, більшість викликів методів std :: string не є вкладеними, навіть якщо ви вказали / Ob2 у параметрах компілятора. Тож навіть щось таке тривіальне, як дзвінок, до std::string::clear()якого, можливо, ви очікуєте, що це дуже швидко, може сприйняти 100 годинних годин, коли зв’язуєте CRT як статичну бібліотеку, і стільки ж 300 годинних годин, коли ви посилаєтесь на DLL.

З цієї ж причини повернення за посиланням краще, оскільки воно уникає призначення, конструктора та деструктора.


Дякуємо за вашу спробу. На ideone ( ideone.com/BCp5r ) він набирає 18,5 Мб / с, приблизно половину швидкості sprintf. А з VC ++ 2010 він отримує близько 50 Мб / с, що приблизно вдвічі перевищує швидкість спринту.
Бен Войгт

Мб / с - це дивна метрика, особливо це стосується того, як ви не видаляєте пробіли пробілів із рядка у своїх реалізаціях. Мій оновлений код працює швидше, ніж ваша реалізація з x64 VC ++ 2005 на Core i7 920 (16.2M ops / s проти 14.8M ops / s), _ltoa робить 8.5M ops / s, а sprintf () - 3.85M ops / s.
Євген Сміт

Ваш код не змінює належним чином розмір рядка, мій (див. Рядки 81, 198 та 290). Я взяв кілька ярликів у sprintfреалізації, я вже згадував це у своєму запитанні, але я вважаю, що код-та-бит дає точно такий же результат, як і стрингстрім.
Ben Voigt

Я також виправив sprintfобгортку, щоб уникнути плутанини.
Бен Войгт

До речі, ваша покращена версія ( ideone.com/GLAbS ) отримує 41,7 Мб / с на ideone, а приблизно 120 Мб / с у 32-розрядному VC ++ 2010.
Бен Войгт

21

Ах, до речі дивовижний виклик ... Мені було дуже весело з цим.

У мене є два алгоритми для подання (код знаходиться внизу, якщо ви хочете перейти до нього). У своїх порівняннях я вимагаю, щоб функція повертала рядок і щоб вона могла обробляти int та unsigned int. Порівнювати речі, які не будують рядок, з тими, що не є насправді, не має сенсу.

Перший - це весела реалізація, яка не використовує попередньо обчислених таблиць пошуку або явного поділу / модуля. Цей є конкурентоспроможним для інших з gcc та з усіма, крім Timo, на msvc (з уважної причини, яку я поясню нижче). Другий алгоритм - це моє фактичне подання на найвищу ефективність. У моїх тестах він перемагає всіх інших як на gcc, так і на msvc.

Я думаю, я знаю, чому деякі результати на MSVC дуже хороші. std :: string має два відповідних конструктора, std::string(char* str, size_t n)
і
std::string(ForwardIterator b, ForwardIterator e)
gcc робить те ж саме для обох ... тобто, він використовує другий для реалізації першого. Перший конструктор може бути реалізований значно ефективніше, ніж це робить MSVC. Побічна перевага цього полягає в тому, що в деяких випадках (наприклад, мій швидкий код та код Тімо) конструктор рядків може бути накреслений. Насправді просто переключення між цими конструкторами в MSVC - це майже в 2 рази різниця для мого коду.

Мої результати тестування ефективності:

Джерела коду:

- Voigt
- Timo
- ergosys
- user434507
- user-voigt-timo
- hopman-fun
- hopman-fast

gcc 4.4.5 -O2 на Ubuntu 10.10 64-розрядний, Core i5

hopman_fun: 124,688 Мб / сек --- 8,020 с
hopman_fast: 137.552 Мб / сек --- 7.270 с
voigt: 120,192 Мб / сек --- 8,320 с
user_voigt_timo: 97,9432 Мб / сек --- 10,210 с
тимо: 120.482 Мб / сек --- 8.300 с
користувач: 97,7517 Мб / сек --- 10,230 с
ergosys: 101,42 Мб / сек --- 9,860 с

64-розрядний / Ox для MSVC 2010 на Windows 7 64-розрядний, Core i5

hopman_fun: 127 Мб / сек --- 7.874 с
hopman_fast: 259 Мб / сек --- 3,861 с
voigt: 221,435 Мб / сек --- 4,516 с
user_voigt_timo: 195.695 Мб / сек --- 5.110 с
тимо: 253.165 Мб / сек --- 3.950 с
користувач: 212.63 Мб / сек --- 4.703 с
ergosys: 78.0518 Мб / сек --- 12.812 с

Ось деякі результати та рамки тестування / синхронізації на ideone
http://ideone.com/XZRqp
Зауважте, що ideone - це 32-бітове середовище. Обидва мої алгоритми страждають від цього, але hopman_fast принаймні все ще є конкурентоспроможним.

Зауважте, що для тих двох або близько того, що не будують рядок, я додав такий шаблон функції:

template <typename T>
std::string itostr(T t) {
    std::string ret;
    itostr(t, ret);
    return ret;
}

Тепер для мого коду ... спочатку найцікавіше:

    // hopman_fun

template <typename T> 
T reduce2(T v) {
    T k = ((v * 410) >> 12) & 0x000F000F000F000Full;
    return (((v - k * 10) << 8) + k);
}

template <typename T>
T reduce4(T v) {
    T k = ((v * 10486) >> 20) & 0xFF000000FFull;
    return reduce2(((v - k * 100) << 16) + (k));
}

typedef unsigned long long ull;
inline ull reduce8(ull v) {
    ull k = ((v * 3518437209u) >> 45);
    return reduce4(((v - k * 10000) << 32) + (k));
}

template <typename T>
std::string itostr(T o) {
    union {
        char str[16];
        unsigned short u2[8];
        unsigned u4[4];
        unsigned long long u8[2];
    };

    unsigned v = o < 0 ? ~o + 1 : o;

    u8[0] = (ull(v) * 3518437209u) >> 45;
    u8[0] = (u8[0] * 28147497672ull);
    u8[1] = v - u2[3] * 100000000;

    u8[1] = reduce8(u8[1]);
    char* f;
    if (u2[3]) {
        u2[3] = reduce2(u2[3]);
        f = str + 6;
    } else {
        unsigned short* k = u4[2] ? u2 + 4 : u2 + 6;
        f = *k ? (char*)k : (char*)(k + 1);
    }
    if (!*f) f++;

    u4[1] |= 0x30303030;
    u4[2] |= 0x30303030;
    u4[3] |= 0x30303030;
    if (o < 0) *--f = '-';
    return std::string(f, (str + 16) - f);
}

І тоді швидкий:

    // hopman_fast

struct itostr_helper {
    static unsigned out[10000];

    itostr_helper() {
        for (int i = 0; i < 10000; i++) {
            unsigned v = i;
            char * o = (char*)(out + i);
            o[3] = v % 10 + '0';
            o[2] = (v % 100) / 10 + '0';
            o[1] = (v % 1000) / 100 + '0';
            o[0] = (v % 10000) / 1000;
            if (o[0]) o[0] |= 0x30;
            else if (o[1] != '0') o[0] |= 0x20;
            else if (o[2] != '0') o[0] |= 0x10;
            else o[0] |= 0x00;
        }
    }
};
unsigned itostr_helper::out[10000];

itostr_helper hlp_init;

template <typename T>
std::string itostr(T o) {
    typedef itostr_helper hlp;

    unsigned blocks[3], *b = blocks + 2;
    blocks[0] = o < 0 ? ~o + 1 : o;
    blocks[2] = blocks[0] % 10000; blocks[0] /= 10000;
    blocks[2] = hlp::out[blocks[2]];

    if (blocks[0]) {
        blocks[1] = blocks[0] % 10000; blocks[0] /= 10000;
        blocks[1] = hlp::out[blocks[1]];
        blocks[2] |= 0x30303030;
        b--;
    }

    if (blocks[0]) {
        blocks[0] = hlp::out[blocks[0] % 10000];
        blocks[1] |= 0x30303030;
        b--;
    }

    char* f = ((char*)b);
    f += 3 - (*f >> 4);

    char* str = (char*)blocks;
    if (o < 0) *--f = '-';
    return std::string(f, (str + 12) - f);
}

Для тих, хто зацікавлений у тому, як працює хопман-забава, але не відчуваєш його спантеличення, я створив коментовану версію на ideone.com/rnDxk
Кріс

Я не розумію, як працює перший навіть із коментарями. : D Швидкий - це справді приємно, хоча він має ціну у використанні пам'яті. Але я здогадуюсь 40 кБ все ще прийнятний. Я фактично змінив власний код, щоб також використовувати 4 групи символів, і набрав подібну швидкість. ideone.com/KbTFe
Тимо

Було б важко змінити його для роботи з uint64_t? Я перемістив цей код на C і замінив 'T' на тип int, і він працює, але він не працює для uint64_t, і у мене немає поняття, як його налаштувати.
пбн

11

Дані порівняльної оцінки для коду, наданого у запитанні:

Про ideone (gcc 4.3.4):

Core i7, Windows 7 64-розрядна, 8 ГБ оперативної пам’яті, 32-розрядна версія Visual C ++ 2010:

cl /Ox /EHsc

  • струнні потоки: 3,39 Мб / с, 3,67 Мб / с
  • спринт: 16,8 Мб / с, 16,2 Мб / с
  • шахта: 194 Мб / с, 207 Мб / с (з включеною PGO: 250 Мб / с)

64-розрядний процесор Core i7, Windows 7, 8 ГБ оперативної пам’яті, 64-розрядна версія Visual C ++ 2010:

cl /Ox /EHsc

  • струнні потоки: 4,42 Мб / с, 4,92 Мб / с
  • спринт: 21,0 Мб / с, 20,8 Мб / с
  • шахта: 238 Мб / с, 228 Мб / с

Core i7, Windows 7 64-розрядна, 8 ГБ оперативної пам’яті, cygwin gcc 4.3.4:

g++ -O3

  • потокові потоки: 2,19 Мб / с, 2,17 Мб / с
  • спринт: 13,1 Мб / с, 13,4 Мб / с
  • шахта: 30,0 Мб / с, 30,2 Мб / с

редагувати : Я збирався додати власну відповідь, але питання було закрите, тому я додаю його тут. :) Я написав власний алгоритм і встиг отримати гідне вдосконалення щодо коду Бена, хоча я протестував його лише в MSVC 2010. Я також зробив орієнтир для всіх реалізованих реалізацій, представлених до цього часу, використовуючи ту саму програму тестування, що була в оригіналі Бена код. - Тімо

Intel Q9450, Win XP 32bit, MSVC 2010

cl /O2 /EHsc

  • stringstream: 2,87 Мб / с
  • спринт: 16,1 Мб / с
  • Бен: 202 Мб / с
  • Бен (непідписаний буфер): 82,0 Мб / с
  • ergosys (оновлена ​​версія): 64,2 Мб / с
  • user434507: 172 Мб / с
  • Тимо: 241 Мб / с

-

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};

static const int BUFFER_SIZE = 11;

std::string itostr(int val)
{
  char buf[BUFFER_SIZE];
  char *it = &buf[BUFFER_SIZE-2];

  if(val>=0) {
    int div = val/100;
    while(div) {
      memcpy(it,&digit_pairs[2*(val-div*100)],2);
      val = div;
      it-=2;
      div = val/100;
    }
    memcpy(it,&digit_pairs[2*val],2);
    if(val<10)
      it++;
  } else {
    int div = val/100;
    while(div) {
      memcpy(it,&digit_pairs[-2*(val-div*100)],2);
      val = div;
      it-=2;
      div = val/100;
    }
    memcpy(it,&digit_pairs[-2*val],2);
    if(val<=-10)
      it--;
    *it = '-';
  }

  return std::string(it,&buf[BUFFER_SIZE]-it);
}

std::string itostr(unsigned int val)
{
  char buf[BUFFER_SIZE];
  char *it = (char*)&buf[BUFFER_SIZE-2];

  int div = val/100;
  while(div) {
    memcpy(it,&digit_pairs[2*(val-div*100)],2);
    val = div;
    it-=2;
    div = val/100;
  }
  memcpy(it,&digit_pairs[2*val],2);
  if(val<10)
    it++;

  return std::string((char*)it,(char*)&buf[BUFFER_SIZE]-(char*)it);
}

дякую за ці дані, поясніть, будь ласка, про швидкість gcc! це дуже низько :(
Behrouz.M

@Behrouz: Дійсно. Я не точно впевнений, чому gcc настільки повільний, чи це версія gcc std::stringчи погана оптимізація арифметичного коду. Я зроблю ще одну версію, яка не перетворюється std::stringна кінець, і я побачу, чи краще тарифи на gcc.
Бен Войгт

@Timo: Це дуже круто. Я не очікував, що зміна буфера без підпису допоможе з VC ++, що вже було досить швидко, тому воно застосоване лише до gcc, і тепер user434507 надав там значно кращу версію.
Бен Войгт

Я думаю, вам слід додати версію, яка не перетворює на std :: string. Змінюючи лише один рядок коду, функція працює в половині часу на моїй машині, використовуючи GCC. І видаливши std :: string люди змогли б використовувати цю функцію всередині програм C.
користувач1593842

11

Хоча інформація, яку ми отримуємо тут щодо алгоритмів, досить приємна, я думаю, що питання "зламане", і я поясню, чому я вважаю це:

Питання задає ефективність конверсії int-> std::string, і це може бути цікавим при порівнянні загальнодоступних методів, таких як різні потокові реалізації або boost :: lexical_cast. Однак не має сенсу запитувати новий код , спеціалізований алгоритм, робити це. Причина полягає в тому, що int2string завжди буде включати розподіл купи з std :: string, і якщо ми намагаємось витіснити останнє з нашого алгоритму перетворення, я не думаю, що має сенс змішувати ці вимірювання з куповими розподілами, виконаними std: : рядок. Якщо я хочу конвертування виконавців, я завжди буду використовувати буфер фіксованого розміру і, звичайно, ніколи не виділяти нічого на купу!

Підводячи підсумок, я думаю, що терміни слід розділити:

  • По-перше, найшвидше (int -> фіксований буфер) перетворення.
  • По-друге, час копіювання (фіксований буфер -> std :: string) копії.
  • По-третє, перевірити, як розподіл std :: string може використовуватися безпосередньо як буфер, щоб зберегти копіювання.

Ці аспекти не слід змішувати за один час, ІМХО.


3
<quote> int2string завжди буде включати розподіл купи з std :: string </quote> Не з оптимізацією дрібних рядків, яка присутня в більшості поточних реалізацій Стандартної бібліотеки.
Бен Войгт

Зрештою, std::stringвимога "вихід як " була поставлена ​​саме там, щоб зробити речі справедливими та послідовними для всіх заявок. Алгоритми, які швидше дають std::stringрезультати, також будуть швидше заповнювати попередньо виділений буфер.
Бен Войгт

3
@Ben - хороші коментарі. Esp sm.str.opt це те, що мені доведеться пам’ятати в майбутньому, коли судити про ефективність std.string.
Мартін Ба

6

Я не можу перевірити на VS, але це здається швидше, ніж ваш код для g ++, приблизно 10%. Можливо, це може бути налаштовано, вибрані значення рішення - здогадки. тільки, вибачте.

typedef unsigned buf_t; 

static buf_t * reduce(unsigned val, buf_t * stp) {
   unsigned above = val / 10000; 
   if (above != 0) {
      stp = reduce(above, stp); 
      val -= above * 10000; 
   }

   buf_t digit  = val / 1000; 
   *stp++ = digit + '0'; 
   val -= digit * 1000; 

   digit  = val / 100; 
   *stp++ = digit + '0'; 
   val -= digit * 100; 

   digit  = val / 10; 
   *stp++ = digit + '0'; 
   val -= digit * 10; 
   *stp++ = val + '0'; 
   return stp; 
}

std::string itostr(int input) {

   buf_t buf[16]; 


   if(input == INT_MIN) {  
      char buf2[16]; 
      std::sprintf(buf2, "%d", input); 
      return std::string(buf2); 
   }

   // handle negative
   unsigned val = input;
   if(input < 0) 
      val = -input;

   buf[0] = '0'; 
   buf_t* endp = reduce(val, buf+1); 
   *endp = 127; 

   buf_t * stp = buf+1; 
   while (*stp == '0') 
      stp++;
   if (stp == endp)
      stp--; 

   if (input < 0) { 
      stp--; 
      *stp = '-'; 
   }
   return std::string(stp, endp); 
}

З непідписаним варіантом: ideone.com/pswq9 . Здається, що зміна типу буфера з charна unsignedподібне покращення швидкості в моєму коді, принаймні, на gcc / ideone ideone.com/uthKK . Я завтра тестую на VS.
Бен Войгт

6

Оновлена ​​відповідь користувача2985907 ... modp_ufast ...

Integer To String Test (Type 1)
[modp_ufast]Numbers: 240000000  Total:   657777786      Time:  1.1633sec        Rate:206308473.0686nums/sec
[sprintf] Numbers: 240000000    Total:   657777786      Time: 24.3629sec        Rate:  9851045.8556nums/sec
[karma]   Numbers: 240000000    Total:   657777786      Time:  5.2389sec        Rate: 45810870.7171nums/sec
[strtk]   Numbers: 240000000    Total:   657777786      Time:  3.3126sec        Rate: 72450283.7492nums/sec
[so   ]   Numbers: 240000000    Total:   657777786      Time:  3.0828sec        Rate: 77852152.8820nums/sec
[timo ]   Numbers: 240000000    Total:   657777786      Time:  4.7349sec        Rate: 50687912.9889nums/sec
[voigt]   Numbers: 240000000    Total:   657777786      Time:  5.1689sec        Rate: 46431985.1142nums/sec
[hopman]  Numbers: 240000000    Total:   657777786      Time:  4.6169sec        Rate: 51982554.6497nums/sec
Press any key to continue . . .

Integer To String Test(Type 2)
[modp_ufast]Numbers: 240000000  Total:   660000000      Time:  0.5072sec        Rate:473162716.4618nums/sec
[sprintf] Numbers: 240000000    Total:   660000000      Time: 22.3483sec        Rate: 10739062.9383nums/sec
[karma]   Numbers: 240000000    Total:   660000000      Time:  4.2471sec        Rate: 56509024.3035nums/sec
[strtk]   Numbers: 240000000    Total:   660000000      Time:  2.1683sec        Rate:110683636.7123nums/sec
[so   ]   Numbers: 240000000    Total:   660000000      Time:  2.7133sec        Rate: 88454602.1423nums/sec
[timo ]   Numbers: 240000000    Total:   660000000      Time:  2.8030sec        Rate: 85623453.3872nums/sec
[voigt]   Numbers: 240000000    Total:   660000000      Time:  3.4019sec        Rate: 70549286.7776nums/sec
[hopman]  Numbers: 240000000    Total:   660000000      Time:  2.7849sec        Rate: 86178023.8743nums/sec
Press any key to continue . . .

Integer To String Test (type 3)
[modp_ufast]Numbers: 240000000  Total:   505625000      Time:  1.6482sec        Rate:145610315.7819nums/sec
[sprintf] Numbers: 240000000    Total:   505625000      Time: 20.7064sec        Rate: 11590618.6109nums/sec
[karma]   Numbers: 240000000    Total:   505625000      Time:  4.3036sec        Rate: 55767734.3570nums/sec
[strtk]   Numbers: 240000000    Total:   505625000      Time:  2.9297sec        Rate: 81919227.9275nums/sec
[so   ]   Numbers: 240000000    Total:   505625000      Time:  3.0278sec        Rate: 79266003.8158nums/sec
[timo ]   Numbers: 240000000    Total:   505625000      Time:  4.0631sec        Rate: 59068204.3266nums/sec
[voigt]   Numbers: 240000000    Total:   505625000      Time:  4.5616sec        Rate: 52613393.0285nums/sec
[hopman]  Numbers: 240000000    Total:   505625000      Time:  4.1248sec        Rate: 58184194.4569nums/sec
Press any key to continue . . .

int ufast_utoa10(unsigned int value, char* str)
{
#define JOIN(N) N "0", N "1", N "2", N "3", N "4", N "5", N "6", N "7", N "8", N "9"
#define JOIN2(N) JOIN(N "0"), JOIN(N "1"), JOIN(N "2"), JOIN(N "3"), JOIN(N "4"), \
                 JOIN(N "5"), JOIN(N "6"), JOIN(N "7"), JOIN(N "8"), JOIN(N "9")
#define JOIN3(N) JOIN2(N "0"), JOIN2(N "1"), JOIN2(N "2"), JOIN2(N "3"), JOIN2(N "4"), \
                 JOIN2(N "5"), JOIN2(N "6"), JOIN2(N "7"), JOIN2(N "8"), JOIN2(N "9")
#define JOIN4    JOIN3("0"), JOIN3("1"), JOIN3("2"), JOIN3("3"), JOIN3("4"), \
                 JOIN3("5"), JOIN3("6"), JOIN3("7"), JOIN3("8"), JOIN3("9")
#define JOIN5(N) JOIN(N), JOIN(N "1"), JOIN(N "2"), JOIN(N "3"), JOIN(N "4"), \
                 JOIN(N "5"), JOIN(N "6"), JOIN(N "7"), JOIN(N "8"), JOIN(N "9")
#define JOIN6    JOIN5(), JOIN5("1"), JOIN5("2"), JOIN5("3"), JOIN5("4"), \
                 JOIN5("5"), JOIN5("6"), JOIN5("7"), JOIN5("8"), JOIN5("9")
#define F(N)     ((N) >= 100 ? 3 : (N) >= 10 ? 2 : 1)
#define F10(N)   F(N),F(N+1),F(N+2),F(N+3),F(N+4),F(N+5),F(N+6),F(N+7),F(N+8),F(N+9)
#define F100(N)  F10(N),F10(N+10),F10(N+20),F10(N+30),F10(N+40),\
                 F10(N+50),F10(N+60),F10(N+70),F10(N+80),F10(N+90)
  static const short offsets[] = { F100(0), F100(100), F100(200), F100(300), F100(400),
                                  F100(500), F100(600), F100(700), F100(800), F100(900)};
  static const char table1[][4] = { JOIN("") }; 
  static const char table2[][4] = { JOIN2("") }; 
  static const char table3[][4] = { JOIN3("") };
  static const char table4[][5] = { JOIN4 }; 
  static const char table5[][4] = { JOIN6 };
#undef JOIN
#undef JOIN2
#undef JOIN3
#undef JOIN4
  char *wstr;
  int remains[2];
  unsigned int v2;
  if (value >= 100000000) {
    v2 = value / 10000;
    remains[0] = value - v2 * 10000;
    value = v2;
    v2 = value / 10000;
    remains[1] = value - v2 * 10000;
    value = v2;
    wstr = str;
    if (value >= 1000) {
      *(__int32 *) wstr = *(__int32 *) table4[value];
      wstr += 4;
    } else {
      *(__int32 *) wstr = *(__int32 *) table5[value];
      wstr += offsets[value];
    }
    *(__int32 *) wstr = *(__int32 *) table4[remains[1]];
    wstr += 4;
    *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
    wstr += 4;
    *wstr = 0;
    return (wstr - str);
  }
  else if (value >= 10000) {
    v2 = value / 10000;
    remains[0] = value - v2 * 10000;
    value = v2;
    wstr = str;
    if (value >= 1000) {
      *(__int32 *) wstr = *(__int32 *) table4[value];
      wstr += 4;
      *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
      wstr += 4;
      *wstr = 0;
      return 8;
    } else {
      *(__int32 *) wstr = *(__int32 *) table5[value];
      wstr += offsets[value];
      *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
      wstr += 4;
      *wstr = 0;
      return (wstr - str);
    }
  }
  else {
    if (value >= 1000) {
      *(__int32 *) str = *(__int32 *) table4[value];
      str += 4;
      *str = 0;
      return 4;
    } else if (value >= 100) {
      *(__int32 *) str = *(__int32 *) table3[value];
      return 3;
    } else if (value >= 10) {
      *(__int16 *) str = *(__int16 *) table2[value];
      str += 2;
      *str = 0;
      return 2;
    } else {
      *(__int16 *) str = *(__int16 *) table1[value];
      return 1;
    }
  }
}

int ufast_itoa10(int value, char* str) {
  if (value < 0) { *(str++) = '-'; 
    return ufast_utoa10(-value, str) + 1; 
  }
  else return ufast_utoa10(value, str);
}


    void ufast_test() {

   print_mode("[modp_ufast]");

   std::string s;
   s.reserve(32);
   std::size_t total_length = 0;
   strtk::util::timer t;
   t.start();

   char buf[128];
   int len;
   for (int i = (-max_i2s / 2); i < (max_i2s / 2); ++i)
   {
      #ifdef enable_test_type01
      s.resize(ufast_itoa10(((i & 1) ? i : -i), const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif

      #ifdef enable_test_type02
      s.resize(ufast_itoa10(max_i2s + i, const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif

      #ifdef enable_test_type03
      s.resize(ufast_itoa10(randval[(max_i2s + i) & 1023], const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif
   }
   t.stop();
   printf("Numbers:%10lu\tTotal:%12lu\tTime:%8.4fsec\tRate:%14.4fnums/sec\n",
          static_cast<unsigned long>(3 * max_i2s),
          static_cast<unsigned long>(total_length),
          t.time(),
          (3.0 * max_i2s) / t.time());
}

4
Ви ніколи не кладете його в рядок. Крім того, я не знаю, чому ваші результати для коду всіх інших такі низькі, ваш процесор не повільний.
Бен Войгт

modp_ufast має помилку, він повертає 10 замість 1000000, 19 замість 1090000 і т. д. до 11000000.
Денис Заїкін

Змінено ufast повертає недійсні значення (зупиняється після кількох помилок). Mismatch found: Generated: -99 Reference: -9099999 Mismatch found: Generated: -99 Reference: -9099998 Mismatch found: Generated: -99 Reference: -9099997
Вальдемар

Тут доступна більш портативна версія з орієнтирами: github.com/fmtlib/format-benchmark/blob/master/src/u2985907.h
vitaut

2

Ось моя маленька спроба цієї веселої загадки.

Замість використання таблиць пошуку, я хотів, щоб компілятор все це зрозумів. Зокрема, у цьому випадку - якщо ви читаєте «Захоплення хакерів», ви бачите, як працюють розділення та модуль - що дозволяє дуже оптимізувати це за допомогою інструкцій SSE / AVX.

Тест на ефективність

Щодо швидкості, то тут мій орієнтир говорить про те, що вона в 1,5 рази швидша, ніж робота Тімо (в моєму Intel Haswell він працює приблизно на 1 ГБ / с).

Речі, які ви могли б вважати обманом

Щодо чіт-коду, який не використовую-std-string, який я використовую - я, звичайно, взяв це до уваги і для мого еталону методу Тімо.

Я використовую внутрішнє: BSR. Якщо вам подобається, ви можете також замість цього використовувати таблиці DeBruijn - це одна з речей, про яку я досить багато писав у своїй публікації "найшвидший 2log". Звичайно, для цього є покарання за ефективність (* ну ... якщо ви робите багато операцій з itoa, ви можете зробити швидший BSR, але, мабуть, це не справедливо ...).

Те, як це працює

Перше, що потрібно зробити - це зрозуміти, скільки нам потрібно пам'яті. Це в основному 10лог, який можна реалізувати різними розумними способами. Докладні відомості див. У " цитатах, що часто цитуються" .

Наступне, що потрібно зробити - це виконати числовий вихід. Для цього я використовую рекурсію шаблону, тому компілятор розбере це.

Я використовую 'modulo' та 'div' прямо поруч. Якщо ви прочитаєте захоплення Хакера, то помітите, що обидва тісно пов’язані між собою, тож якщо у вас є одна відповідь, ви, ймовірно, маєте й іншу. Я зрозумів, що компілятор може з'ясувати деталі ... :-)

Код

Отримання кількості цифр за допомогою (модифікованого) log10:

struct logarithm
{
    static inline int log2(unsigned int value)
    {
        unsigned long index;
        if (!_BitScanReverse(&index, value))
        {
            return 0;
        }

        // add 1 if x is NOT a power of 2 (to do the ceil)
        return index + (value&(value - 1) ? 1 : 0);
    }

    static inline int numberDigits(unsigned int v)
    {
        static unsigned int const PowersOf10[] =
        { 0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };

        int t = (logarithm::log2(v) + 1) * 1233 >> 12; // (use a lg2 method from above)
        return 1 + t - (v < PowersOf10[t]);
    }
};

Отримати собі рядок:

template <int count>
struct WriteHelper
{
    inline static void WriteChar(char* buf, unsigned int value)
    {
        unsigned int div = value / 10;
        unsigned int rem = value % 10;
        buf[count - 1] = rem + '0';

        WriteHelper<count - 1>::WriteChar(buf, div);
    }
};

template <>
struct WriteHelper<1>
{
    inline static void WriteChar(char* buf, unsigned int value) 
    {
        buf[0] = '0' + value;
    }
};

// Boring code that converts a length into a switch.
// TODO: Test if recursion with an 'if' is faster.
static inline void WriteNumber(char* data, int len, unsigned int val) 
{
    switch (len) {
    case 1:
        WriteHelper<1>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 2:
        WriteHelper<2>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 3:
        WriteHelper<3>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 4:
        WriteHelper<4>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 5:
        WriteHelper<5>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 6:
        WriteHelper<6>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 7:
        WriteHelper<7>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 8:
        WriteHelper<8>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 9:
        WriteHelper<9>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 10:
        WriteHelper<10>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    }
}

// The main method you want to call...
static int Write(char* data, int val) 
{
    int len;
    if (val >= 0) 
    {
        len = logarithm::numberDigits(val);
        WriteNumber(data, len, unsigned int(val));
        return len;
    }
    else 
    {
        unsigned int v(-val);
        len = logarithm::numberDigits(v);
        WriteNumber(data+1, len, v);
        data[0] = '-';
        return len + 1;
    }
}

Цікаво, що нещодавно я подарував копію програми Hacker's Delight колезі. Якісь розділи? Звичайно, зауважте, що модуль і div, хоча обидва повернулися з однієї інструкції ділення, не будуть отримані таким чином, оскільки поділ на константу реалізується набагато швидше за допомогою апаратного множення, ніж ділення.
Бен Войгт

@BenVoigt насправді, якщо запустити "розібрати" на VS2013, ви отримаєте саме той код, який ви очікували, прочитавши захоплення H. Розділ, який ви шукаєте, - глава 10.
атласуйте

Так, це реалізація за допомогою апаратного множення, про яку я мав на увазі.
Бен Войгт

@BenVoigt Так, звичайно, це я мав на увазі. І модуль, і множення (на постійне) використовують одне і те ж магічне число, зсув (арифтичне і нормальне). Моє припущення тут полягало в тому, що компілятор може зрозуміти, що він випускає одні й ті самі інструкції кілька разів і оптимізує це - і оскільки всі операції можуть бути векторизовані, це може зрозуміти і це (назвемо це бонусом :-). Моя думка із захопленням H полягала в тому, що якщо ви знаєте, як складаються ці операції (ціле множення, зміщення), ви можете зробити ці припущення.
атлас

2

У мене це було сидіти деякий час і, нарешті, обійшлося, щоб розмістити його.

Ще кілька методів порівняно з подвійним словом за раз hopman_fast . Результати призначені для оптимізованої строки std ::, оптимізованої GCC, оскільки в протилежному випадку різниці в продуктивності затьмарюються накладними витратами на код управління рядком "копіювати на запис". Пропускна здатність вимірюється так само, як і в цій темі, підраховується кількість циклів для необроблених частин серіалізації коду до копіювання вихідного буфера в рядок.

HOPMAN_FAST - performance reference  
TM_CPP, TM_VEC - scalar and vector versions of Terje Mathisen algorithm  
WM_VEC - intrinsics implementation of Wojciech Mula's vector algorithm  
AK_BW - word-at-a-time routine with a jump table that fills a buffer in reverse  
AK_FW - forward-stepping word-at-a-time routine with a jump table in assembly  
AK_UNROLLED - generic word-at-a-time routine that uses an unrolled loop  

Пропускна здатність

Сировинна вартість

Перемикачі часу компіляції:

-DVSTRING - дозволяє рядки SSO для старих налаштувань GCC
-DBSR1 - дозволяє швидкий log10
-DRDTSC - дозволяє лічильники циклів

#include <cstdio>
#include <iostream>
#include <climits>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <limits>
#include <ctime>
#include <stdint.h>
#include <x86intrin.h>

/* Uncomment to run */
// #define HOPMAN_FAST
// #define TM_CPP
// #define TM_VEC
// #define WM_VEC
// #define AK_UNROLLED
// #define AK_BW
// #define AK_FW

using namespace std;
#ifdef VSTRING
#include <ext/vstring.h>
typedef __gnu_cxx::__vstring string_type;
#else
typedef string string_type;
#endif

namespace detail {

#ifdef __GNUC__
#define ALIGN(N) __attribute__ ((aligned(N)))
#define PACK __attribute__ ((packed))
  inline size_t num_digits(unsigned u) {
    struct {
      uint32_t count;
      uint32_t max;
    } static digits[32] ALIGN(64) = {
    { 1, 9 }, { 1, 9 }, { 1, 9 }, { 1, 9 },
    { 2, 99 }, { 2, 99 }, { 2, 99 },
    { 3, 999 }, { 3, 999 }, { 3, 999 },
    { 4, 9999 }, { 4, 9999 }, { 4, 9999 }, { 4, 9999 },
    { 5, 99999 }, { 5, 99999 }, { 5, 99999 },
    { 6, 999999 }, { 6, 999999 }, { 6, 999999 },
    { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 },
    { 8, 99999999 }, { 8, 99999999 }, { 8, 99999999 },
    { 9, 999999999 }, { 9, 999999999 }, { 9, 999999999 },
    { 10, UINT_MAX }, { 10, UINT_MAX }
    };
#if (defined(i386) || defined(__x86_64__)) && (defined(BSR1) || defined(BSR2))
    size_t l = u;
#if defined(BSR1)
    __asm__ __volatile__ (
      "bsrl %k0, %k0    \n\t"
      "shlq $32, %q1    \n\t" 
      "movq %c2(,%0,8), %0\n\t" 
      "cmpq %0, %q1     \n\t"
      "seta %b1         \n\t"
      "addl %1, %k0     \n\t"
      : "+r" (l), "+r"(u)
      : "i"(digits)
      : "cc"
    );
    return l;
#else
    __asm__ __volatile__ ( "bsr %0, %0;"  : "+r" (l) );
    return digits[l].count + ( u > digits[l].max );
#endif
#else
    size_t l = (u != 0) ? 31 - __builtin_clz(u) : 0;
    return digits[l].count + ( u > digits[l].max );
#endif 
  }
#else 
  inline unsigned msb_u32(unsigned x) {
    static const unsigned bval[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 };
    unsigned base = 0;
    if (x & (unsigned) 0xFFFF0000) { base += 32/2; x >>= 32/2; }
    if (x & (unsigned) 0x0000FF00) { base += 32/4; x >>= 32/4; }
    if (x & (unsigned) 0x000000F0) { base += 32/8; x >>= 32/8; }
    return base + bval[x];
  }

  inline size_t num_digits(unsigned x) {
    static const unsigned powertable[] = {
  0,10,100,1000,10000,100000,1000000,10000000,100000000, 1000000000 };
    size_t lg_ten = msb_u32(x) * 1233 >> 12;
    size_t adjust = (x >= powertable[lg_ten]);
    return lg_ten + adjust;
  }
#endif /* __GNUC__ */

  struct CharBuffer {
    class reverse_iterator : public iterator<random_access_iterator_tag, char> {
        char* m_p;
      public:
        reverse_iterator(char* p) : m_p(p - 1) {}
        reverse_iterator operator++() { return --m_p; }
        reverse_iterator operator++(int) { return m_p--; }
        char operator*() const { return *m_p; }
        bool operator==( reverse_iterator it) const { return m_p == it.m_p; }
        bool operator!=( reverse_iterator it) const { return m_p != it.m_p; }
        difference_type operator-( reverse_iterator it) const { return it.m_p - m_p; }
    };
  };

  union PairTable {
    char c[2];
    unsigned short u;
  } PACK table[100] ALIGN(1024) = {
    {{'0','0'}},{{'0','1'}},{{'0','2'}},{{'0','3'}},{{'0','4'}},{{'0','5'}},{{'0','6'}},{{'0','7'}},{{'0','8'}},{{'0','9'}},
    {{'1','0'}},{{'1','1'}},{{'1','2'}},{{'1','3'}},{{'1','4'}},{{'1','5'}},{{'1','6'}},{{'1','7'}},{{'1','8'}},{{'1','9'}},
    {{'2','0'}},{{'2','1'}},{{'2','2'}},{{'2','3'}},{{'2','4'}},{{'2','5'}},{{'2','6'}},{{'2','7'}},{{'2','8'}},{{'2','9'}},
    {{'3','0'}},{{'3','1'}},{{'3','2'}},{{'3','3'}},{{'3','4'}},{{'3','5'}},{{'3','6'}},{{'3','7'}},{{'3','8'}},{{'3','9'}},
    {{'4','0'}},{{'4','1'}},{{'4','2'}},{{'4','3'}},{{'4','4'}},{{'4','5'}},{{'4','6'}},{{'4','7'}},{{'4','8'}},{{'4','9'}},
    {{'5','0'}},{{'5','1'}},{{'5','2'}},{{'5','3'}},{{'5','4'}},{{'5','5'}},{{'5','6'}},{{'5','7'}},{{'5','8'}},{{'5','9'}},
    {{'6','0'}},{{'6','1'}},{{'6','2'}},{{'6','3'}},{{'6','4'}},{{'6','5'}},{{'6','6'}},{{'6','7'}},{{'6','8'}},{{'6','9'}},
    {{'7','0'}},{{'7','1'}},{{'7','2'}},{{'7','3'}},{{'7','4'}},{{'7','5'}},{{'7','6'}},{{'7','7'}},{{'7','8'}},{{'7','9'}},
    {{'8','0'}},{{'8','1'}},{{'8','2'}},{{'8','3'}},{{'8','4'}},{{'8','5'}},{{'8','6'}},{{'8','7'}},{{'8','8'}},{{'8','9'}},
    {{'9','0'}},{{'9','1'}},{{'9','2'}},{{'9','3'}},{{'9','4'}},{{'9','5'}},{{'9','6'}},{{'9','7'}},{{'9','8'}},{{'9','9'}}
  };
} // namespace detail

struct progress_timer {
    clock_t c;
    progress_timer() : c(clock()) {}
    int elapsed() { return clock() - c; }
    ~progress_timer() {
        clock_t d = clock() - c;
        cout << d / CLOCKS_PER_SEC << "."
            << (((d * 1000) / CLOCKS_PER_SEC) % 1000 / 100)
            << (((d * 1000) / CLOCKS_PER_SEC) % 100 / 10)
            << (((d * 1000) / CLOCKS_PER_SEC) % 10)
            << " s" << endl;
    }
};

#ifdef HOPMAN_FAST
namespace hopman_fast {

    static unsigned long cpu_cycles = 0;

    struct itostr_helper {
        static ALIGN(1024) unsigned out[10000];

        itostr_helper() {
            for (int i = 0; i < 10000; i++) {
                unsigned v = i;
                char * o = (char*)(out + i);
                o[3] = v % 10 + '0';
                o[2] = (v % 100) / 10 + '0';
                o[1] = (v % 1000) / 100 + '0';
                o[0] = (v % 10000) / 1000;
                if (o[0]) o[0] |= 0x30;
                else if (o[1] != '0') o[0] |= 0x20;
                else if (o[2] != '0') o[0] |= 0x10;
                else o[0] |= 0x00;
            }
        }
    };
    unsigned itostr_helper::out[10000];

    itostr_helper hlp_init;

    template <typename T>
    string_type itostr(T o) {
        typedef itostr_helper hlp;
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        unsigned blocks[3], *b = blocks + 2;
        blocks[0] = o < 0 ? ~o + 1 : o;
        blocks[2] = blocks[0] % 10000; blocks[0] /= 10000;
        blocks[2] = hlp::out[blocks[2]];

        if (blocks[0]) {
            blocks[1] = blocks[0] % 10000; blocks[0] /= 10000;
            blocks[1] = hlp::out[blocks[1]];
            blocks[2] |= 0x30303030;
            b--;
        }

        if (blocks[0]) {
            blocks[0] = hlp::out[blocks[0] % 10000];
            blocks[1] |= 0x30303030;
            b--;
        }

        char* f = ((char*)b);
        f += 3 - (*f >> 4);

        char* str = (char*)blocks;
        if (o < 0) *--f = '-';

        str += 12;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(f, str);
    }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
}
#endif

namespace ak {
#ifdef AK_UNROLLED
  namespace unrolled {
    static unsigned long cpu_cycles = 0;

    template <typename value_type> class Proxy {
      static const size_t MaxValueSize = 16;

      static inline char* generate(int value, char* buffer) {
        union { char* pc; unsigned short* pu; } b = { buffer + MaxValueSize };
        unsigned u, v = value < 0 ? unsigned(~value) + 1 : value;
        *--b.pu = detail::table[v % 100].u; u = v;
        if ((v /= 100)) {
          *--b.pu = detail::table[v % 100].u; u = v;
          if ((v /= 100)) {
            *--b.pu = detail::table[v % 100].u; u = v;
            if ((v /= 100)) {
              *--b.pu = detail::table[v % 100].u; u = v;
              if ((v /= 100)) {
                *--b.pu = detail::table[v % 100].u; u = v;
        } } } }
        *(b.pc -= (u >= 10)) = '-';
        return b.pc + (value >= 0);
      }
      static inline char* generate(unsigned value, char* buffer) {
        union { char* pc; unsigned short* pu; } b = { buffer + MaxValueSize };
        unsigned u, v = value;
        *--b.pu = detail::table[v % 100].u; u = v;
        if ((v /= 100)) {
          *--b.pu = detail::table[v % 100].u; u = v;
          if ((v /= 100)) {
            *--b.pu = detail::table[v % 100].u; u = v;
            if ((v /= 100)) {
              *--b.pu = detail::table[v % 100].u; u = v;
              if ((v /= 100)) {
                *--b.pu = detail::table[v % 100].u; u = v;
        } } } }
        return b.pc + (u < 10);
      }
    public:
      static inline string_type convert(value_type v) {
        char buf[MaxValueSize];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char* p = generate(v, buf);
        char* e = buf + MaxValueSize;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(p, e);
      }
    };
    string_type itostr(int i) { return Proxy<int>::convert(i); }
    string_type itostr(unsigned i) { return Proxy<unsigned>::convert(i); }
    unsigned long cycles() { return cpu_cycles; }
    void reset() { cpu_cycles = 0; }
  }
#endif

#if defined(AK_BW)
  namespace bw {
    static unsigned long cpu_cycles = 0;
    typedef uint64_t u_type;

    template <typename value_type> class Proxy {

      static inline void generate(unsigned v, size_t len, char* buffer) {
        u_type u = v;
        switch(len) {
        default: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 8) = detail::table[v -= 100 * u].u; 
        case  8: v = (u * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 6) = detail::table[u -= 100 * v].u; 
        case  6: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 4) = detail::table[v -= 100 * u].u;
        case  4: v = (u * 167773) >> 24; *(uint16_t*)(buffer + 2) = detail::table[u -= 100 * v].u;
        case  2: *(uint16_t*)buffer = detail::table[v].u;
        case  0: return;
        case  9: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 7) = detail::table[v -= 100 * u].u;
        case  7: v = (u * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 5) = detail::table[u -= 100 * v].u;
        case  5: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 3) = detail::table[v -= 100 * u].u;
        case  3: v = (u * 167773) >> 24; *(uint16_t*)(buffer + 1) = detail::table[u -= 100 * v].u;
        case  1: *buffer = v + 0x30;
        }
      }
    public:
      static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        size_t len = detail::num_digits(val);
        buf[0] = '-';

        char* e = buf + neg;
        generate(val, len, e);
        e += len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
      }
    };
    string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
    string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
    unsigned long cycles() { return cpu_cycles; }
    void reset() { cpu_cycles = 0; }
  }
#endif

#if defined(AK_FW)
  namespace fw {
        static unsigned long cpu_cycles = 0;
        typedef uint32_t u_type;
        template <typename value_type> class Proxy {

        static inline void generate(unsigned v, size_t len, char* buffer) {
#if defined(__GNUC__) && defined(__x86_64__)
          uint16_t w;
          uint32_t u;
          __asm__ __volatile__ (
        "jmp %*T%=(,%3,8)       \n\t"
        "T%=: .quad L0%=        \n\t"
        "     .quad L1%=        \n\t"
        "     .quad L2%=        \n\t"
        "     .quad L3%=        \n\t"
        "     .quad L4%=        \n\t"
        "     .quad L5%=        \n\t"
        "     .quad L6%=        \n\t"
        "     .quad L7%=        \n\t"
        "     .quad L8%=        \n\t"
        "     .quad L9%=        \n\t"
        "     .quad L10%=       \n\t"
        "L10%=:         \n\t"
        " imulq $1441151881, %q0, %q1\n\t"
        " shrq $57, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100000000, %1, %1  \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, (%4)        \n\t"
        "L8%=:          \n\t"
        " imulq $1125899907, %q0, %q1\n\t"
        " shrq $50, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $1000000, %1, %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -8(%4,%3)   \n\t"
        "L6%=:          \n\t"
        " imulq $429497, %q0, %q1   \n\t"
        " shrq $32, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $10000, %1, %1  \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -6(%4,%3)   \n\t"
        "L4%=:          \n\t"
        " imull $167773, %0, %1 \n\t"
        " shrl $24, %1      \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100, %1, %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -4(%4,%3)   \n\t"
        "L2%=:          \n\t"
        " movw %c5(,%q0,2), %w2 \n\t"
        " movw %w2, -2(%4,%3)   \n\t"
        "L0%=: jmp 1f       \n\t"
        "L9%=:          \n\t"
        " imulq $1801439851, %q0, %q1\n\t"
        " shrq $54, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $10000000, %1, %1   \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, (%4)        \n\t"
        "L7%=:          \n\t"
        " imulq $43980466, %q0, %q1 \n\t"
        " shrq $42, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100000, %1, %1 \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -7(%4,%3)   \n\t"
        "L5%=:          \n\t"
        " imulq $268436, %q0, %q1   \n\t"
        " shrq $28, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $1000, %1, %1   \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -5(%4,%3)   \n\t"
        "L3%=:          \n\t"
        " imull $6554, %0, %1   \n\t"
        " shrl $15, %1      \n\t"
        " andb $254, %b1        \n\t"
        " movw %c5(,%q1), %w2   \n\t"
        " leal (%1,%1,4), %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -3(%4,%3)   \n\t"
        "L1%=:          \n\t"
        " addl $48, %0      \n\t"
        " movb %b0, -1(%4,%3)   \n\t"
        "1:             \n\t"
        : "+r"(v), "=&q"(u), "=&r"(w)
        : "r"(len), "r"(buffer), "i"(detail::table)
        : "memory", "cc"
          ); 
#else
          u_type u;
          switch(len) {
        default: u = (v * 1441151881ULL) >> 57; *(uint16_t*)(buffer) = detail::table[u].u; v -= u * 100000000;
        case  8: u = (v * 1125899907ULL) >> 50; *(uint16_t*)(buffer + len - 8) = detail::table[u].u; v -= u * 1000000;
        case  6: u = (v * 429497ULL) >> 32; *(uint16_t*)(buffer + len - 6) = detail::table[u].u; v -= u * 10000;
        case  4: u = (v * 167773) >> 24; *(uint16_t*)(buffer + len - 4) = detail::table[u].u; v -= u * 100;
        case  2: *(uint16_t*)(buffer + len - 2) = detail::table[v].u;
        case  0: return;
        case  9: u = (v * 1801439851ULL) >> 54; *(uint16_t*)(buffer) = detail::table[u].u; v -= u * 10000000; 
        case  7: u = (v * 43980466ULL) >> 42; *(uint16_t*)(buffer + len - 7) = detail::table[u].u; v -= u * 100000; 
        case  5: u = (v * 268436ULL) >> 28;  *(uint16_t*)(buffer + len - 5) = detail::table[u].u; v -= u * 1000;
        case  3: u = (v * 6554) >> 16; *(uint16_t*)(buffer + len - 3) = detail::table[u].u; v -= u * 10;
        case  1: *(buffer + len - 1) = v + 0x30;
          }
#endif
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        size_t len = detail::num_digits(val);
        if (neg) buf[0] = '-';
        char* e = buf + len + neg;
        generate(val, len, buf + neg);
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
} // ak

namespace wm {
#ifdef WM_VEC
#if defined(__GNUC__) && defined(__x86_64__)
  namespace vec {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

      static inline unsigned generate(unsigned v, char* buf) {
        static struct {
          unsigned short mul_10[8];
          unsigned short div_const[8];
          unsigned short shl_const[8];
          unsigned char  to_ascii[16];
        } ALIGN(64) bits = 
        {
          { // mul_10
           10, 10, 10, 10, 10, 10, 10, 10
          },
          { // div_const
            8389, 5243, 13108, 0x8000, 8389, 5243, 13108, 0x8000
          },
          { // shl_const
            1 << (16 - (23 + 2 - 16)),
            1 << (16 - (19 + 2 - 16)),
            1 << (16 - 1 - 2),
            1 << (15),
            1 << (16 - (23 + 2 - 16)),
            1 << (16 - (19 + 2 - 16)),
            1 << (16 - 1 - 2),
            1 << (15)
          },
          { // to_ascii 
            '0', '0', '0', '0', '0', '0', '0', '0',
            '0', '0', '0', '0', '0', '0', '0', '0'
          }
        };
        unsigned x, y, l;
        x = (v * 1374389535ULL) >> 37;
        y = v;
        l = 0;
        if (x) {
          unsigned div = 0xd1b71759;
          unsigned mul = 55536;
          __m128i z, m, a, o;
          y -= 100 * x;
          z = _mm_cvtsi32_si128(x);
          m = _mm_load_si128((__m128i*)bits.mul_10);
          o = _mm_mul_epu32( z, _mm_cvtsi32_si128(div));
          z = _mm_add_epi32( z, _mm_mul_epu32( _mm_cvtsi32_si128(mul), _mm_srli_epi64( o, 45) ) );
          z = _mm_slli_epi64( _mm_shuffle_epi32( _mm_unpacklo_epi16(z, z), 5 ), 2 );
          a = _mm_load_si128((__m128i*)bits.to_ascii);
          z = _mm_mulhi_epu16( _mm_mulhi_epu16( z, *(__m128i*)bits.div_const ), *(__m128i*)bits.shl_const );
          z = _mm_sub_epi16( z, _mm_slli_epi64( _mm_mullo_epi16( m, z ), 16 ) );
          z = _mm_add_epi8( _mm_packus_epi16( z, _mm_xor_si128(o, o) ), a );
          x = __builtin_ctz( ~_mm_movemask_epi8( _mm_cmpeq_epi8( a, z ) ) );
          l = 8 - x;
          uint64_t q = _mm_cvtsi128_si64(z) >> (x * 8);
          *(uint64_t*)buf = q;
          buf += l;
          x = 1;
        }
        v = (y * 6554) >> 16;
        l += 1 + (x | (v != 0));
            *(unsigned short*)buf = 0x30 + ((l > 1) ? ((0x30 + y - v * 10) << 8) + v : y);
            return l;
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        buf[0] = '-';
        unsigned len = generate(val, buf + neg);
        char* e = buf + len + neg;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
        }
      };
      inline string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      inline string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
#endif
} // wm

namespace tmn {

#ifdef TM_CPP
  namespace cpp {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

        static inline void generate(unsigned v, char* buffer) {
          unsigned const f1_10000 = (1 << 28) / 10000;
          unsigned tmplo, tmphi;

          unsigned lo = v % 100000;
          unsigned hi = v / 100000;

          tmplo = lo * (f1_10000 + 1) - (lo >> 2);
          tmphi = hi * (f1_10000 + 1) - (hi >> 2);

          unsigned mask = 0x0fffffff;
          unsigned shift = 28;

          for(size_t i = 0; i < 5; i++)
          {
            buffer[i + 0] = '0' + (char)(tmphi >> shift);
            buffer[i + 5] = '0' + (char)(tmplo >> shift);
            tmphi = (tmphi & mask) * 5;
            tmplo = (tmplo & mask) * 5;
            mask >>= 1;
            shift--;
          }
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char buf[16];
        size_t len = detail::num_digits(val);
        char* e = buf + 11;
        generate(val, buf + 1);
        buf[10 - len] = '-';
        len += neg;
        char* b = e - len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(b, e);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif

#ifdef TM_VEC
  namespace vec {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

        static inline unsigned generate(unsigned val, char* buffer) {
        static struct {
            unsigned char mul_10[16];
            unsigned char to_ascii[16];
            unsigned char gather[16];
            unsigned char shift[16];
        } ALIGN(64) bits = {
            { 10,0,0,0,10,0,0,0,10,0,0,0,10,0,0,0 },
            { '0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0' },
            { 3,5,6,7,9,10,11,13,14,15,0,0,0,0,0,0 },
            { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }
        };

        unsigned u = val / 1000000;
        unsigned l = val - u * 1000000;

        __m128i x, h, f, m, n;

        n = _mm_load_si128((__m128i*)bits.mul_10);
        x = _mm_set_epi64x( l, u );
        h = _mm_mul_epu32( x, _mm_set1_epi32(4294968) );
        x = _mm_sub_epi64( x, _mm_srli_epi64( _mm_mullo_epi32( h, _mm_set1_epi32(1000) ), 32 ) );
        f = _mm_set1_epi32((1 << 28) / 1000 + 1);
        m = _mm_srli_epi32( _mm_cmpeq_epi32(m, m), 4 );
        x = _mm_shuffle_epi32( _mm_blend_epi16( x, h, 204 ), 177 );
        f = _mm_sub_epi32( _mm_mullo_epi32(f, x), _mm_srli_epi32(x, 2) );

        h = _mm_load_si128((__m128i*)bits.to_ascii);

        x = _mm_srli_epi32(f, 28);
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 8) );
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 16) );
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 24) );

        x = _mm_add_epi8( _mm_shuffle_epi8(x, *(__m128i*)bits.gather), h );
        l = __builtin_ctz( ~_mm_movemask_epi8( _mm_cmpeq_epi8( h, x ) ) | (1 << 9) );

        x = _mm_shuffle_epi8( x, _mm_add_epi8(*(__m128i*)bits.shift, _mm_set1_epi8(l) ) );

        _mm_store_si128( (__m128i*)buffer, x );
        return 10 - l;
        }

      public:
        static inline string_type convert(bool neg, unsigned val) {
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char arena[32];
        char* buf = (char*)((uintptr_t)(arena + 16) & ~(uintptr_t)0xf);
        *(buf - 1)= '-';
        unsigned len = generate(val, buf) + neg;
        buf -= neg;
        char* end = buf + len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, end);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
}

bool fail(string in, string_type out) {
    cout << "failure: " << in << " => " << out << endl;
    return false;
}

#define TEST(x, n) \
    stringstream ss; \
    string_type s = n::itostr(x); \
    ss << (long long)x; \
    if (::strcmp(ss.str().c_str(), s.c_str())) { \
        passed = fail(ss.str(), s); \
        break; \
    }

#define test(x) { \
    passed = true; \
    if (0 && passed) { \
        char c = CHAR_MIN; \
        do { \
            TEST(c, x); \
        } while (c++ != CHAR_MAX); \
        if (!passed) cout << #x << " failed char!!!" << endl; \
    } \
    if (0 && passed) { \
        short c = numeric_limits<short>::min(); \
        do { \
            TEST(c, x); \
        } while (c++ != numeric_limits<short>::max()); \
        if (!passed) cout << #x << " failed short!!!" << endl; \
    } \
    if (passed) { \
        int c = numeric_limits<int>::min(); \
        do { \
            TEST(c, x); \
        } while ((c += 100000) < numeric_limits<int>::max() - 100000); \
        if (!passed) cout << #x << " failed int!!!" << endl; \
    } \
    if (passed) { \
        unsigned c = numeric_limits<unsigned>::max(); \
        do { \
            TEST(c, x); \
        } while ((c -= 100000) > 100000); \
        if (!passed) cout << #x << " failed unsigned int!!!" << endl; \
    } \
}

#define time(x, N) \
if (passed) { \
    static const int64_t limits[] = \
        {0, 10, 100, 1000, 10000, 100000, \
         1000000, 10000000, 100000000, 1000000000, 10000000000ULL }; \
    long passes = 0; \
    cout << #x << ": "; \
    progress_timer t; \
    uint64_t s = 0; \
    if (do_time) { \
        for (int n = 0; n < N1; n++) { \
            int i = 0; \
            while (i < N2) { \
                int v = ((NM - i) % limits[N]) | (limits[N] / 10); \
                int w = x::itostr(v).size() + \
                    x::itostr(-v).size(); \
                i += w * mult; \
                                passes++; \
            } \
            s += i / mult; \
        } \
    } \
    k += s; \
    cout << N << " digits: " \
          << s / double(t.elapsed()) * CLOCKS_PER_SEC/1000000 << " MB/sec, " << (x::cycles() / passes >> 1) << " clocks per pass "; \
    x::reset(); \
}

#define series(n) \
    { if (do_test) test(n);    if (do_time) time(n, 1); if (do_time) time(n, 2); \
      if (do_time) time(n, 3); if (do_time) time(n, 4); if (do_time) time(n, 5); \
      if (do_time) time(n, 6); if (do_time) time(n, 7); if (do_time) time(n, 8); \
      if (do_time) time(n, 9); if (do_time) time(n, 10); }

int N1 = 1, N2 = 500000000, NM = INT_MAX;
int mult = 1; //  used to stay under timelimit on ideone
unsigned long long k = 0;

int main(int argc, char** argv) {
    bool do_time = 1, do_test = 1;
    bool passed = true;
#ifdef HOPMAN_FAST
    series(hopman_fast)
#endif
#ifdef WM_VEC
    series(wm::vec)
#endif
#ifdef TM_CPP
    series(tmn::cpp)
#endif
#ifdef TM_VEC
    series(tmn::vec)
#endif
#ifdef AK_UNROLLED
    series(ak::unrolled)
#endif
#if defined(AK_BW)
    series(ak::bw)
#endif
#if defined(AK_FW)
    series(ak::fw)
#endif
    return k;
}

1

Я вважаю, що я створив найшвидший алгоритм з цілим рядком. Це варіація алгоритму Modulo 100, яка на 33% швидша, а головне - швидша як для менших, так і для великих чисел. Він називається алгоритмом сценарію ItoS. Прочитати документ, в якому пояснюється, як я створив алгоритм @see https://github.com/kabuki-starship/kabuki-toolkit/wiki/Engineering-a-Faster-Integer-to-String-Algorithm . Ви можете використовувати алгоритм, але, будь ласка, подумайте про те, щоб повернутись до VM Kabuki і перевірити сценарій ; особливо якщо ви зацікавлені в мережевих протоколах AMIL-NLP та / або визначених програмним забезпеченням.

введіть тут опис зображення

/** Kabuki Toolkit
    @version 0.x
    @file    ~/source/crabs/print_itos.cc
    @author  Cale McCollough <cale.mccollough@gmail.com>
    @license Copyright (C) 2017-2018 Cale McCollough <calemccollough@gmail.com>;
             All right reserved (R). Licensed under the Apache License, Version 
             2.0 (the "License"); you may not use this file except in 
             compliance with the License. You may obtain a copy of the License 
             [here](http://www.apache.org/licenses/LICENSE-2.0). Unless 
             required by applicable law or agreed to in writing, software 
             distributed under the License is distributed on an "AS IS" BASIS, 
             WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
             implied. See the License for the specific language governing 
             permissions and limitations under the License.
*/

#include <stdafx.h>
#include "print_itos.h"

#if MAJOR_SEAM >= 1 && MINOR_SEAM >= 1

#if MAJOR_SEAM == 1 && MINOR_SEAM == 1
#define DEBUG 1

#define PRINTF(format, ...) printf(format, __VA_ARGS__);
#define PUTCHAR(c) putchar(c);
#define PRINT_PRINTED\
    sprintf_s (buffer, 24, "%u", value); *text_end = 0;\
    printf ("\n    Printed \"%s\" leaving value:\"%s\":%u",\
            begin, buffer, (uint)strlen (buffer));
#define PRINT_BINARY PrintBinary (value);
#define PRINT_BINARY_TABLE PrintBinaryTable (value);
#else
#define PRINTF(x, ...)
#define PUTCHAR(c)
#define PRINT_PRINTED
#define PRINT_BINARY
#define PRINT_BINARY_TABLE
#endif

namespace _ {

void PrintLine (char c) {
    std::cout << '\n';
    for (int i = 80; i > 0; --i) 
        std::cout << c;
}

char* Print (uint32_t value, char* text, char* text_end) {

    // Lookup table for powers of 10.
    static const uint32_t k10ToThe[]{
        1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
        1000000000, ~(uint32_t)0 };

    /** Lookup table of ASCII char pairs for 00, 01, ..., 99.
        To convert this algorithm to big-endian, flip the digit pair bytes. */
    static const uint16_t kDigits00To99[100] = {
        0x3030, 0x3130, 0x3230, 0x3330, 0x3430, 0x3530, 0x3630, 0x3730, 0x3830,
        0x3930, 0x3031, 0x3131, 0x3231, 0x3331, 0x3431, 0x3531, 0x3631, 0x3731,
        0x3831, 0x3931, 0x3032, 0x3132, 0x3232, 0x3332, 0x3432, 0x3532, 0x3632,
        0x3732, 0x3832, 0x3932, 0x3033, 0x3133, 0x3233, 0x3333, 0x3433, 0x3533,
        0x3633, 0x3733, 0x3833, 0x3933, 0x3034, 0x3134, 0x3234, 0x3334, 0x3434,
        0x3534, 0x3634, 0x3734, 0x3834, 0x3934, 0x3035, 0x3135, 0x3235, 0x3335,
        0x3435, 0x3535, 0x3635, 0x3735, 0x3835, 0x3935, 0x3036, 0x3136, 0x3236,
        0x3336, 0x3436, 0x3536, 0x3636, 0x3736, 0x3836, 0x3936, 0x3037, 0x3137,
        0x3237, 0x3337, 0x3437, 0x3537, 0x3637, 0x3737, 0x3837, 0x3937, 0x3038,
        0x3138, 0x3238, 0x3338, 0x3438, 0x3538, 0x3638, 0x3738, 0x3838, 0x3938,
        0x3039, 0x3139, 0x3239, 0x3339, 0x3439, 0x3539, 0x3639, 0x3739, 0x3839,
        0x3939, };

    static const char kMsbShift[] = { 4, 7, 11, 14, 17, 21, 24, 27, 30, };

    if (!text) {
        return nullptr;
    }
    if (text >= text_end) {
        return nullptr;
    }

    uint16_t* text16;
    char      digit;
    uint32_t  scalar;
    uint16_t  digits1and2,
              digits3and4,
              digits5and6,
              digits7and8;
    uint32_t  comparator;

    #if MAJOR_SEAM == 1 && MINOR_SEAM == 1
    // Write a bunches of xxxxxx to the buffer for debug purposes.
    for (int i = 0; i <= 21; ++i) {
        *(text + i) = 'x';
    }
    *(text + 21) = 0;
    char* begin = text;
    char buffer[256];
    #endif

    if (value < 10) {
        PRINTF ("\n    Range:[0, 9] length:1 ")
        if (text + 1 >= text_end) {
            return nullptr;
        }
        *text++ = '0' + (char)value;
        PRINT_PRINTED
        return text;
    }
    if (value < 100) {
        PRINTF ("\n    Range:[10, 99] length:2 ")
        if (text + 2 >= text_end) {
            return nullptr;
        }
        *reinterpret_cast<uint16_t*> (text) = kDigits00To99[value];
        PRINT_PRINTED
        return text + 2;
    }
    if (value >> 14) {
        if (value >> 27) {
            if (value >> 30) {
                PRINTF ("\n    Range:[1073741824, 4294967295] length:10")
                Print10:
                if (text + 10 >= text_end) {
                    return nullptr;
                }
                comparator = 100000000;
                digits1and2 = (uint16_t)(value / comparator);
                PRINTF ("\n    digits1and2:%u", digits1and2)
                value -= digits1and2 * comparator;
                *reinterpret_cast<uint16_t*> (text) = kDigits00To99[digits1and2];
                PRINT_PRINTED
                text += 2;
                goto Print8;
            }
            else {
                comparator = 1000000000;
                if (value >= comparator) {
                    PRINTF ("\n    Range:[100000000, 1073741823] length:10")
                    goto Print10;
                }
                PRINTF ("\n    Range:[134217727, 999999999] length:9")
                if (text + 9 >= text_end) {
                    return nullptr;
                }
                comparator = 100000000;
                digit = (char)(value / comparator);
                *text++ = digit + '0';
                PRINT_PRINTED
                value -= comparator * digit;
                goto Print8;
            }
        }
        else if (value >> 24) {
            comparator = k10ToThe[8];
            if (value >= comparator) {
                PRINTF ("\n    Range:[100000000, 134217728] length:9")
                if (text + 9 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            PRINTF ("\n    Range:[16777216, 9999999] length:8")
            if (text + 8 >= text_end) {
                return nullptr;
            }
            Print8:
            PRINTF ("\n    Print8:")
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;
            *reinterpret_cast<uint16_t*> (text + 6) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 4) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 2) = 
                kDigits00To99[digits5and6];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text) = 
                kDigits00To99[digits7and8];
            PRINT_PRINTED
            return text + 8;
        }
        else if (value >> 20) {
            comparator = 10000000;
            if (value >= comparator) {
                PRINTF ("\n    Range:[10000000, 16777215] length:8")
                if (text + 8 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            else {
                PRINTF ("\n    Range:[1048576, 9999999] length:7")
                if (text + 7 >= text_end) {
                    return nullptr;
                }
            }
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;;
            *reinterpret_cast<uint16_t*> (text + 5) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 3) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 1) = 
                kDigits00To99[digits5and6];
            PRINT_PRINTED
            *text = (char)digits7and8 + '0';
            return text + 7;
        }
        else if (value >> 17) {
            comparator = 1000000;
            if (value >= comparator) {
                PRINTF ("\n    Range:[100000, 1048575] length:7")
                if (text + 7 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            else {
                PRINTF ("\n    Range:[131072, 999999] length:6")
                if (text + 6 >= text_end) {
                    return nullptr;
                }
            }
            Print6:
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;
            text16 = reinterpret_cast<uint16_t*> (text + 6);
            *reinterpret_cast<uint16_t*> (text + 4) = kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 2) = kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text    ) = kDigits00To99[digits5and6];
            PRINT_PRINTED
            return text + 6;
        }
        else { // (value >> 14)
            if (value >= 100000) {
                PRINTF ("\n    Range:[65536, 131071] length:6")
                goto Print6;
            }
            PRINTF ("\n    Range:[10000, 65535] length:5")
            if (text + 5 >= text_end) {
                return nullptr;
            }
            digits5and6 = 10000;
            digit = (uint8_t)(value / digits5and6);
            value -= digits5and6 * digit;
            *text = digit + '0';
            PRINT_PRINTED
            digits1and2 = (uint16_t)value;
            digits5and6 = 100;
            digits3and4 = digits1and2 / digits5and6;
            digits1and2 -= digits3and4 * digits5and6;
            *reinterpret_cast<uint16_t*> (text + 1) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
                PRINTF ("\n    digits1and2:%u", digits1and2)
            *reinterpret_cast<uint16_t*> (text + 3) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            return text + 5;
        }
    }
    digits1and2 = (uint16_t)value;
    if (value >> 10) {
        digits5and6 = 10000;
        if (digits1and2 >= digits5and6) {
            if (text + 5 >= text_end) {
                return nullptr;
            }
            PRINTF ("\n    Range:[10000, 16383] length:5")
            *text++ = '1';
            PRINT_PRINTED
            digits1and2 -= digits5and6;

        }
        else {
            PRINTF ("\n    Range:[1024, 9999] length:4")
            if (text + 4 >= text_end) {
                return nullptr;
            }
        }
        digits5and6 = 100;
        digits3and4 = digits1and2 / digits5and6;
        digits1and2 -= digits3and4 * digits5and6;
        *reinterpret_cast<uint16_t*> (text    ) = kDigits00To99[digits3and4];
        PRINT_PRINTED
        *reinterpret_cast<uint16_t*> (text + 2) = kDigits00To99[digits1and2];
        PRINT_PRINTED
        return text + 4;
    }
    else {
        if (text + 4 >= text_end) {
            return nullptr;
        }
        digits3and4 = 1000;
        if (digits1and2 >= digits3and4) {
            PRINTF ("\n    Range:[1000, 1023] length:4")
            digits1and2 -= digits3and4;
            text16 = reinterpret_cast<uint16_t*> (text + 2);
            *text16-- = kDigits00To99[digits1and2];
            PRINT_PRINTED
            *text16 = (((uint16_t)'1') | (((uint16_t)'0') << 8));
            PRINT_PRINTED
            return text + 4;
        }
        PRINTF ("\n    Range:[100, 999] length:3")
        digits1and2 = (uint16_t)value;
        digits3and4 = 100;
        digit = (char)(digits1and2 / digits3and4);
        digits1and2 -= digit * digits3and4;
        *text = digit + '0';
        PRINT_PRINTED
        *reinterpret_cast<uint16_t*> (text + 1) = kDigits00To99[digits1and2];
        PRINT_PRINTED
        return text + 3;
    }
}

}       //< namespace _
#undef  PRINTF
#undef  PRINT_PRINTED
#endif  //< MAJOR_SEAM >= 1 && MINOR_SEAM >= 1

Автор


3
FYI: Опублікувавши це в Stack Overflow, ви безповоротно опублікували його під CC BY-SA 3.0 (за умовами використання Stack Exchange). Ваша заява, що вона опублікована під GPL 3, являє собою додаткову ліцензію, яку користувач може додатково використовувати як альтернативу CC BY-SA 3.0. Яку ліцензію використовувати на розсуд користувача, який копіює код. Якщо це питання для вас, я пропоную вам отримати компетентну юридичну консультацію. (IANAL) Зауважте, що в цьому немає нічого поганого, але я подумав, що це слід довести до вашої уваги.
Макіен

Дуже хороша. Однак потрібно повернути а, std::stringщоб порівняння з іншими перерахованими тут методами було дійсним. Спочатку я не міг зрозуміти використання оператора shift для дерева двійкового пошуку, тому що порівняння вже надзвичайно швидке, але тепер я розумію, що це було б корисно для попереднього обчислення зміщеного значення, якщо воно вам потрібно. Ти не використовуєш його. З іншого боку, ви не закінчуєтесь великими літералами, закодованими всередині інструкцій, тож, можливо, це достатньо самої причини.
Бен Войгт

Я забув це зробити. Це просто ще одна функція обгортки. Всі мої речі мають ліцензію на Apache, але я подумав, що спробую GNU, але так ... це не має сенсу.

Гаразд, я змінив ліцензію назад і додав функції рядка. Script - це сім'я мов на основі сокетів для розподілених обчислень, щоб зробити мій IGEEK на суперкомп'ютерах з китайською кімнатою. Мій рядок - це буфер кільця. {: -) - + = <У мене також є кілька дійсно швидких суміжних структур даних, які набагато швидші, ніж JSON. У мене є словник, не упорядкована карта, кортежний список, карта, стек, масив, який дозволяє проводити марширування даних та сценарії, кодовані байтами, текст, складений JIT, та всі види доброти VM. Це ще не зовсім готово.

Я щойно оновив алгоритм і значно покращив продуктивність більшої кількості.

0

Модифікація рішення користувача434507 Змінено для використання масиву символів замість рядка C ++. Бігає трохи швидше. Також перемістив чек на 0 нижче в коді ... так як це ніколи не відбувається в моєму конкретному випадку. Перемістіть його назад, якщо це частіше зустрічається у вашому випадку.

// Int2Str.cpp : Defines the entry point for the console application.
//
#include <stdio.h>
#include <iostream>
#include "StopWatch.h"

using namespace std;

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};

void itostr(int n, char* c) {
    int sign = -(n<0);
    unsigned int val = (n^sign)-sign;

    int size;
    if(val>=10000) {
        if(val>=10000000) {
            if(val>=1000000000) {
                size=10;
            }
            else if(val>=100000000) {
                size=9;
            }
            else size=8;
        }
        else {
            if(val>=1000000) {
                size=7;
            }
            else if(val>=100000) {
                size=6;
            }
            else size=5;
        }
    }
    else {
        if(val>=100) {
            if(val>=1000) {
                size=4;
            }
            else size=3;
        }
        else {
            if(val>=10) {
                size=2;
            }
            else if(n==0) {
                c[0]='0';
                c[1] = '\0';
                return;
            }
            else size=1;
        }
    }
    size -= sign;
    if(sign)
    *c='-';

    c += size-1;
    while(val>=100) {
        int pos = val % 100;
        val /= 100;
        *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
        c-=2;
    }
    while(val>0) {
        *c--='0' + (val % 10);
        val /= 10;
    }
    c[size+1] = '\0';
}

void itostr(unsigned val, char* c)
{
    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else if (val==0) {
                c[0]='0';
                c[1] = '\0';
                return;
            }
            else
                size=1;
        }
    }

    c += size-1;
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    c[size+1] = '\0';
}

void test() {
    bool foundmismatch = false;
    char str[16];
    char compare[16];
    for(int i = -1000000; i < 1000000; i++) {
        int random = rand();
        itostr(random, str);
        itoa(random, compare, 10);
        if(strcmp(str, compare) != 0) {
            cout << "Mismatch found: " << endl;
            cout << "Generated: " << str << endl;
            cout << "Reference: " << compare << endl;
            foundmismatch = true;
        }
    }
    if(!foundmismatch) {
        cout << "No mismatch found!" << endl;
    }
    cin.get();
}

void benchmark() {
    StopWatch stopwatch;
    stopwatch.setup("Timer");
    stopwatch.reset();
    stopwatch.start();
    char str[16];
    for(unsigned int i = 0; i < 2000000; i++) {
        itostr(i, str);
    }
    stopwatch.stop();
    cin.get();
}

int main( int argc, const char* argv[]) {
    benchmark();
}

2
Я перевірив його від 0x80000000 до 0x7FFFFFFF і вже в -999999999 ви отримуєте недійсні значення (я зупинився після кількох невідповідностей). Mismatch found: Generated: -9999999990 Reference: -999999999 Mismatch found: Generated: -9999999980 Reference: -999999998 Mismatch found: Generated: -9999999970 Reference: -999999997
Вальдемар

0

Ми використовуємо такий код (для MSVC):

Шаблон tBitScanReverse:

#include <intrin.h>

namespace intrin {

#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)

template<typename TIntegerValue>
__forceinline auto tBitScanReverse(DWORD * out_index, TIntegerValue mask)
    -> std::enable_if_t<(std::is_integral<TIntegerValue>::value && sizeof(TIntegerValue) == 4), unsigned char>
{
    return _BitScanReverse(out_index, mask);
}
template<typename TIntegerValue>
__forceinline auto tBitScanReverse(DWORD * out_index, TIntegerValue mask)
    -> std::enable_if_t<(std::is_integral<TIntegerValue>::value && sizeof(TIntegerValue) == 8), unsigned char>
{
#if !(_M_IA64 || _M_AMD64)
    auto res = _BitScanReverse(out_index, (unsigned long)(mask >> 32));
    if (res) {
        out_index += 32;
        return res;
    }
    return _BitScanReverse(out_index, (unsigned long)mask);
#else
    return _BitScanReverse64(out_index, mask);
#endif
}

}

помічники char / wchar_t:

template<typename TChar> inline constexpr TChar   ascii_0();
template<>               inline constexpr char    ascii_0() { return  '0'; }
template<>               inline constexpr wchar_t ascii_0() { return L'0'; }

template<typename TChar, typename TInt> inline constexpr TChar ascii_DEC(TInt d) { return (TChar)(ascii_0<TChar>() + d); }

Повноваження 10 таблиць:

static uint32 uint32_powers10[] = {
    1,
    10,
    100,
    1000,
    10000,
    100000,
    1000000,
    10000000,
    100000000,
    1000000000
//   123456789
};
static uint64 uint64_powers10[] = {
    1ULL,
    10ULL,
    100ULL,
    1000ULL,
    10000ULL,
    100000ULL,
    1000000ULL,
    10000000ULL,
    100000000ULL,
    1000000000ULL,
    10000000000ULL,
    100000000000ULL,
    1000000000000ULL,
    10000000000000ULL,
    100000000000000ULL,
    1000000000000000ULL,
    10000000000000000ULL,
    100000000000000000ULL,
    1000000000000000000ULL,
    10000000000000000000ULL
//   1234567890123456789
};

template<typename TUint> inline constexpr const TUint  * powers10();
template<>               inline constexpr const uint32 * powers10() { return uint32_powers10; }
template<>               inline constexpr const uint64 * powers10() { return uint64_powers10; }

Фактичний друк:

template<typename TChar, typename TUInt>
__forceinline auto
print_dec(
    TUInt u,
    TChar * & buffer) -> typename std::enable_if_t<std::is_unsigned<TUInt>::value>
{
    if (u < 10) {                                                   // 1-digit, including 0  
        *buffer++ = ascii_DEC<TChar>(u);
    }
    else {
        DWORD log2u;
        intrin::tBitScanReverse(&log2u, u);                         //  log2u [3,31]  (u >= 10)
        DWORD log10u = ((log2u + 1) * 77) >> 8;                     //  log10u [1,9]   77/256 = ln(2) / ln(10)
        DWORD digits = log10u + (u >= powers10<TUInt>()[log10u]);   //  digits [2,10]

        buffer += digits;
        auto p = buffer;

        for (--digits; digits; --digits) {
            auto x = u / 10, d = u - x * 10;
            *--p = ascii_DEC<TChar>(d);
            u = x;
        }
        *--p = ascii_DEC<TChar>(u);
    }
}

Останній цикл можна розкрутити:

switch (digits) {
case 10: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  9: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  8: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  7: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  6: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  5: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  4: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  3: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  2: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; *--p = ascii_DEC<TChar>(u); break; }
default: __assume(0);
}

Основна ідея така ж, як запропонована раніше @atlaste: https://stackoverflow.com/a/29039967/2204001


0

Щойно натрапив на це через недавню активність; Я дійсно не встигаю додавати орієнтири, але хотів додати те, про що писав раніше, коли мені потрібно швидке ціле перетворення в рядки ...

https://github.com/CarloWood/ai-utils/blob/master/itoa.h
https://github.com/CarloWood/ai-utils/blob/master/itoa.cxx

Примітка, що використовується тут, полягає в тому, що користувач повинен надати std :: масив, який є достатньо великим (у їхньому стеці), і що цей код записує рядок до цього назад, починаючи з одиниць, а потім повертає вказівник у масив із зміщенням до того, де насправді починається результат.

Таким чином, це не виділяє і не переміщує пам'ять, але вона все ще вимагає поділу та модуля на кожну цифру результату (що, на мою думку, є досить швидким, оскільки це лише код, який працює внутрішньо на процесорі; доступ до пам'яті, як правило, є проблемою).


-1

Чому ніхто не використовує функцію div від stdlib, коли потрібні обидва, коефіцієнт та залишок?
Використовуючи вихідний код Тімо, я закінчив щось подібне:

if(val >= 0)
{
    div_t   d2 = div(val,100);
    while(d2.quot)
    {
        COPYPAIR(it,2 * d2.rem);
        it-=2;
        d2 = div(d2.quot,100);
    }
    COPYPAIR(it,2*d2.rem);
    if(d2.quot<10)
        it++;
}
else
{
    div_t   d2 = div(val,100);
    while(d2.quot)
    {
        COPYPAIR(it,-2 * d2.rem);
        it-=2;
        d2 = div(d2.quot,100);
    }
    COPYPAIR(it,-2*d2.rem);
    if(d2.quot<=-10)
        it--;
    *it = '-';
}

Гаразд, для непідписаних int, функцію div не можна використовувати, але з неподписаними можна обробляти окремо.
Я визначив макрос COPYPAIR наступним чином, щоб перевірити варіанти, як скопіювати 2 символи з digit_pairs (не знайшлося очевидних переваг жодного з цих методів):

#define COPYPAIR0(_p,_i) { memcpy((_p), &digit_pairs[(_i)], 2); }
#define COPYPAIR1(_p,_i) { (_p)[0] = digit_pairs[(_i)]; (_p)[1] = digit_pairs[(_i)+1]; }
#define COPYPAIR2(_p,_i) { unsigned short * d = (unsigned short *)(_p); unsigned short * s = (unsigned short *)&digit_pairs[(_i)]; *d = *s; }

#define COPYPAIR COPYPAIR2

1
Це тому, що цей виклик стосується швидкості, а не найменших рядків коду.
Бен Войгт

1
PS: І для людей, які хочуть використовувати це в моєму рішенні: (1) це набагато повільніше і (2) тому, що div працює на підписані цілі числа - що порушує abs (INT32_MIN).
атлас
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.