Чи можливо вказати власну дистанційну функцію за допомогою кластеризації K-значень scikit-learn?


172

Чи можливо вказати власну дистанційну функцію за допомогою кластеризації K-значень scikit-learn?


37
Зауважте, що k-засоби розраховані на евклідову відстань . Він може перестати конвергуватися з іншими відстанями, коли середнє значення вже не є найкращою оцінкою для "центру" кластера.
Має QUIT - Anonymous-Mousse

2
чому k-засоби працює лише з евклідовою дистантністю?
цікаво

9
@ Anonymous-Mousse Неправильно сказати, що k-засоби розроблені лише для евклідової відстані. Він може бути модифікований для роботи з будь-якою дійсною метрикою відстані, визначеною на просторі спостереження. Наприклад, подивіться статтю про k-медоїди .
ely

5
@curious: середнє значення мінімізує різниці у квадраті (= квадрат евклідової відстані). Якщо вам потрібна інша функція відстані, вам потрібно замінити середнє значення на відповідну центральну оцінку. K-медоїди - це такий алгоритм, але знайти медоїд набагато дорожче.
Має QUIT - Anonymous-Mousse

4
Тут дещо актуально: зараз існує відкритий запит на тягу, що реалізує Kernel K-Means. Після закінчення ви зможете вказати власне ядро ​​для обчислення.
jakevdp

Відповіді:


77

Ось невеликий kmeans, який використовує будь-яку з 20-ти непарних відстаней у scipy.spatial.distance або функції користувача.
Коментарі будуть вітатися (до цих пір було лише одного користувача, недостатньо); зокрема, які ваші N, dim, k, метричні показники?

#!/usr/bin/env python
# kmeans.py using any of the 20-odd metrics in scipy.spatial.distance
# kmeanssample 2 pass, first sample sqrt(N)

from __future__ import division
import random
import numpy as np
from scipy.spatial.distance import cdist  # $scipy/spatial/distance.py
    # http://docs.scipy.org/doc/scipy/reference/spatial.html
from scipy.sparse import issparse  # $scipy/sparse/csr.py

__date__ = "2011-11-17 Nov denis"
    # X sparse, any cdist metric: real app ?
    # centres get dense rapidly, metrics in high dim hit distance whiteout
    # vs unsupervised / semi-supervised svm

#...............................................................................
def kmeans( X, centres, delta=.001, maxiter=10, metric="euclidean", p=2, verbose=1 ):
    """ centres, Xtocentre, distances = kmeans( X, initial centres ... )
    in:
        X N x dim  may be sparse
        centres k x dim: initial centres, e.g. random.sample( X, k )
        delta: relative error, iterate until the average distance to centres
            is within delta of the previous average distance
        maxiter
        metric: any of the 20-odd in scipy.spatial.distance
            "chebyshev" = max, "cityblock" = L1, "minkowski" with p=
            or a function( Xvec, centrevec ), e.g. Lqmetric below
        p: for minkowski metric -- local mod cdist for 0 < p < 1 too
        verbose: 0 silent, 2 prints running distances
    out:
        centres, k x dim
        Xtocentre: each X -> its nearest centre, ints N -> k
        distances, N
    see also: kmeanssample below, class Kmeans below.
    """
    if not issparse(X):
        X = np.asanyarray(X)  # ?
    centres = centres.todense() if issparse(centres) \
        else centres.copy()
    N, dim = X.shape
    k, cdim = centres.shape
    if dim != cdim:
        raise ValueError( "kmeans: X %s and centres %s must have the same number of columns" % (
            X.shape, centres.shape ))
    if verbose:
        print "kmeans: X %s  centres %s  delta=%.2g  maxiter=%d  metric=%s" % (
            X.shape, centres.shape, delta, maxiter, metric)
    allx = np.arange(N)
    prevdist = 0
    for jiter in range( 1, maxiter+1 ):
        D = cdist_sparse( X, centres, metric=metric, p=p )  # |X| x |centres|
        xtoc = D.argmin(axis=1)  # X -> nearest centre
        distances = D[allx,xtoc]
        avdist = distances.mean()  # median ?
        if verbose >= 2:
            print "kmeans: av |X - nearest centre| = %.4g" % avdist
        if (1 - delta) * prevdist <= avdist <= prevdist \
        or jiter == maxiter:
            break
        prevdist = avdist
        for jc in range(k):  # (1 pass in C)
            c = np.where( xtoc == jc )[0]
            if len(c) > 0:
                centres[jc] = X[c].mean( axis=0 )
    if verbose:
        print "kmeans: %d iterations  cluster sizes:" % jiter, np.bincount(xtoc)
    if verbose >= 2:
        r50 = np.zeros(k)
        r90 = np.zeros(k)
        for j in range(k):
            dist = distances[ xtoc == j ]
            if len(dist) > 0:
                r50[j], r90[j] = np.percentile( dist, (50, 90) )
        print "kmeans: cluster 50 % radius", r50.astype(int)
        print "kmeans: cluster 90 % radius", r90.astype(int)
            # scale L1 / dim, L2 / sqrt(dim) ?
    return centres, xtoc, distances

#...............................................................................
def kmeanssample( X, k, nsample=0, **kwargs ):
    """ 2-pass kmeans, fast for large N:
        1) kmeans a random sample of nsample ~ sqrt(N) from X
        2) full kmeans, starting from those centres
    """
        # merge w kmeans ? mttiw
        # v large N: sample N^1/2, N^1/2 of that
        # seed like sklearn ?
    N, dim = X.shape
    if nsample == 0:
        nsample = max( 2*np.sqrt(N), 10*k )
    Xsample = randomsample( X, int(nsample) )
    pass1centres = randomsample( X, int(k) )
    samplecentres = kmeans( Xsample, pass1centres, **kwargs )[0]
    return kmeans( X, samplecentres, **kwargs )

def cdist_sparse( X, Y, **kwargs ):
    """ -> |X| x |Y| cdist array, any cdist metric
        X or Y may be sparse -- best csr
    """
        # todense row at a time, v slow if both v sparse
    sxy = 2*issparse(X) + issparse(Y)
    if sxy == 0:
        return cdist( X, Y, **kwargs )
    d = np.empty( (X.shape[0], Y.shape[0]), np.float64 )
    if sxy == 2:
        for j, x in enumerate(X):
            d[j] = cdist( x.todense(), Y, **kwargs ) [0]
    elif sxy == 1:
        for k, y in enumerate(Y):
            d[:,k] = cdist( X, y.todense(), **kwargs ) [0]
    else:
        for j, x in enumerate(X):
            for k, y in enumerate(Y):
                d[j,k] = cdist( x.todense(), y.todense(), **kwargs ) [0]
    return d

def randomsample( X, n ):
    """ random.sample of the rows of X
        X may be sparse -- best csr
    """
    sampleix = random.sample( xrange( X.shape[0] ), int(n) )
    return X[sampleix]

def nearestcentres( X, centres, metric="euclidean", p=2 ):
    """ each X -> nearest centre, any metric
            euclidean2 (~ withinss) is more sensitive to outliers,
            cityblock (manhattan, L1) less sensitive
    """
    D = cdist( X, centres, metric=metric, p=p )  # |X| x |centres|
    return D.argmin(axis=1)

def Lqmetric( x, y=None, q=.5 ):
    # yes a metric, may increase weight of near matches; see ...
    return (np.abs(x - y) ** q) .mean() if y is not None \
        else (np.abs(x) ** q) .mean()

#...............................................................................
class Kmeans:
    """ km = Kmeans( X, k= or centres=, ... )
        in: either initial centres= for kmeans
            or k= [nsample=] for kmeanssample
        out: km.centres, km.Xtocentre, km.distances
        iterator:
            for jcentre, J in km:
                clustercentre = centres[jcentre]
                J indexes e.g. X[J], classes[J]
    """
    def __init__( self, X, k=0, centres=None, nsample=0, **kwargs ):
        self.X = X
        if centres is None:
            self.centres, self.Xtocentre, self.distances = kmeanssample(
                X, k=k, nsample=nsample, **kwargs )
        else:
            self.centres, self.Xtocentre, self.distances = kmeans(
                X, centres, **kwargs )

    def __iter__(self):
        for jc in range(len(self.centres)):
            yield jc, (self.Xtocentre == jc)

#...............................................................................
if __name__ == "__main__":
    import random
    import sys
    from time import time

    N = 10000
    dim = 10
    ncluster = 10
    kmsample = 100  # 0: random centres, > 0: kmeanssample
    kmdelta = .001
    kmiter = 10
    metric = "cityblock"  # "chebyshev" = max, "cityblock" L1,  Lqmetric
    seed = 1

    exec( "\n".join( sys.argv[1:] ))  # run this.py N= ...
    np.set_printoptions( 1, threshold=200, edgeitems=5, suppress=True )
    np.random.seed(seed)
    random.seed(seed)

    print "N %d  dim %d  ncluster %d  kmsample %d  metric %s" % (
        N, dim, ncluster, kmsample, metric)
    X = np.random.exponential( size=(N,dim) )
        # cf scikits-learn datasets/
    t0 = time()
    if kmsample > 0:
        centres, xtoc, dist = kmeanssample( X, ncluster, nsample=kmsample,
            delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
    else:
        randomcentres = randomsample( X, ncluster )
        centres, xtoc, dist = kmeans( X, randomcentres,
            delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
    print "%.0f msec" % ((time() - t0) * 1000)

    # also ~/py/np/kmeans/test-kmeans.py

Додано кілька приміток 26-го марта 2012 року:

1) для косинусної відстані спочатку нормалізуйте всі вектори даних до | X | = 1; тоді

cosinedistance( X, Y ) = 1 - X . Y = Euclidean distance |X - Y|^2 / 2

швидко. Для бітових векторів зберігайте норми окремо від векторів, а не розширюйте їх до плаваючих (хоча деякі програми можуть розширюватися для вас). Для розріджених векторів скажіть 1% N, X. Y повинен зайняти час O (2% N), простір O (N); але я не знаю, які програми роблять це.

2) Кластеризація Scikit-learn дає чудовий огляд k-засобів, mini-batch-k-засобів ... з кодом, який працює на матрицях scipy.sparse.

3) Завжди перевіряйте розміри кластерів після k-засобів. Якщо ви очікуєте кластерів приблизно однакового розміру, але вони виходять [44 37 9 5 5] %... (звук лоскота в голові).


1
+1 Перш за все, дякую за те, що ви поділилися своєю реалізацією. Я просто хотів підтвердити, що алгоритм чудово працює для мого набору даних 900 векторів у 700-мірному просторі. Мені було просто цікаво, чи можна також оцінити якість створених кластерів. Чи може бути використане будь-яке значення у вашому коді для обчислення якості кластера, щоб допомогти у виборі кількості оптимальних кластерів?
Легенда

6
Легенда, ласкаво просимо. (Оновлено код для друку кластера радіусом 50% / 90%). "Якість кластеру" - це велика тема: скільки кластерів у вас є, чи є у вас навчальні зразки з відомими кластерами, наприклад, від експертів? Про кількість кластерів див. ТАК, як робити-i-визначати-k-коли-використовує-k-означає-кластеризує -коді-використовує-k-означає-кластеризує
деніс

1
Ще раз дякую Насправді у мене немає навчальних зразків, але я намагаюся перевірити кластери вручну після класифікації (намагаюся також грати роль експерта з домену). Я виконую класифікацію на рівні документа після застосування SVD до деяких оригінальних документів та зменшення їх розмірності. Результати здаються хорошими, але я не знав, як їх перевірити. На початковому етапі, вивчаючи різні показники дійсності кластерів, я натрапив на індекс Данна, метод Локоть і т. Д. Не був дійсно впевнений, який саме використовувати, тому подумав, що почну з методу Локоть.
Легенда

7
Я знаю, що це не заземлення чогось справді старого, але я тільки почав із використання кменів і натрапив на це. Для майбутніх читачів, які спокусилися скористатися цим кодом: спочатку ознайомтеся з коментарями @ Anonymous-Mousse до цього питання! Наскільки я бачу, ця реалізація робить неправильне припущення, що ви можете якось все-таки використовувати "середнє значення точок у кластері", щоб визначити центроїд цього кластера. Це не має сенсу для нічого іншого, крім евклідової відстані (крім дуже специфічних випадків щодо одиничної сфери тощо). Знову коментарі Аноні-Мусс на це питання прямо на ніс.
Неворис

3
@Nevoris, так, я згоден, за винятком косинусної відстані: дивіться тут чому, також чому-k-означає-кластеризація-алгоритм-використання-тільки-евклідова відстань-метрика
denis

43

На жаль, ні: scikit-learn поточна реалізація k-засобів використовує лише евклідові відстані.

Не тривіально поширювати k-засоби на інші відстані, а відповідь Деніса вище не є правильним способом реалізації k-засобів для інших метрик.


26

Просто використовуйте nltk замість того, де ви можете це зробити, наприклад

from nltk.cluster.kmeans import KMeansClusterer
NUM_CLUSTERS = <choose a value>
data = <sparse matrix that you would normally give to scikit>.toarray()

kclusterer = KMeansClusterer(NUM_CLUSTERS, distance=nltk.cluster.util.cosine_distance, repeats=25)
assigned_clusters = kclusterer.cluster(data, assign_clusters=True)

4
Наскільки ефективна ця реалізація? Здається, назавжди потрібно кластеризувати лише 5 к.п. (у розмірі 100).
Nikana Reklawyks

3
У розмірі 100 кластеризація 1k балів займає 1 секунду за пробіг ( repeats), 1,5 ккал займає 2 хвилини, а 2 к займає ... занадто довго.
Nikana Reklawyks

2
Дійсно; відповідно до коментаря @ Аноні-Мусса нижче, схоже, косинусна відстань може мати проблеми конвергенції. На мій погляд, це справді випадок сміття в сміття: ви можете використовувати будь-яку функцію відстані, яку хочете, але якщо ця функція порушує припущення алгоритму, не сподівайтеся, що вона дасть значущі результати!
Chiraz BenAbdelkader

15

Так, ви можете використовувати метричну функцію різниці; однак, за визначенням, алгоритм кластеризації k-означає спирається на евкдієвську відстань від середнього кластеру.

Ви можете використовувати інший показник, так що, хоча ви все ще обчислюєте середнє значення, ви могли б використовувати щось на кшталт відстані махальнобіса.


25
+1: Дозвольте наголосити, що таке взяття середнього значення підходить лише для певних функцій відстані, таких як евклідова відстань . Для інших функцій дистанції вам також знадобиться замінити функцію оцінки кластерного центру!
Є QUIT - Anonymous-Mousse

2
@ Аноні-Мус. Що я повинен змінити, коли, наприклад, використовую відстань косинуса?
цікаво

6
Не знаю. Я не бачив доказів зближення з Cosine. Я вірю, що він зблизиться, якщо ваші дані будуть негативними та нормалізованими до одиничної сфери, оскільки тоді вони по суті є k-означає в іншому векторному просторі.
Має QUIT - Anonymous-Mousse

1
Я погоджуюся з @ Anonymous-Mousse. Для мене це лише випадок сміття в сміття: ви можете запускати K-засоби з будь-якою функцією відстані, яку хочете, але якщо ця функція порушує основні припущення алгоритму, не сподівайтеся, що він буде значущим. результати!
Chiraz BenAbdelkader

@ Anonymous-Mousse, але як реалізувати K-засоби за допомогою дистанції mahalnobis?
Сесілія

7

Існує pyclustering, який є python / C ++ (так що це швидко!) І дозволяє задати власну метричну функцію

from pyclustering.cluster.kmeans import kmeans
from pyclustering.utils.metric import type_metric, distance_metric

user_function = lambda point1, point2: point1[0] + point2[0] + 2
metric = distance_metric(type_metric.USER_DEFINED, func=user_function)

# create K-Means algorithm with specific distance metric
start_centers = [[4.7, 5.9], [5.7, 6.5]];
kmeans_instance = kmeans(sample, start_centers, metric=metric)

# run cluster analysis and obtain results
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()

Насправді, я не перевіряв цей код, але збив його разом із кодом квитка та прикладу .


потрібен встановлений Matplotlib, який потребує "Python як рамки для Mac OS X" :(
CpILL


3

Sklearn Kmeans використовує евклідову відстань . Він не має метричного параметра. При цьому, якщо ви кластеризация часових рядів , ви можете використовувати tslearnпакет пітона, коли ви можете вказати метрику ( dtw, softdtw, euclidean).

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.