Підрахунок та підсумовування позитивних та від’ємних числових послідовностей


31

Я хочу написати код для підрахунку та підсумовування будь-яких позитивних і негативних рядів чисел.
Числа або позитивні, або негативні (немає нуля).
Я написав коди з forпетлями. Чи є якась креативна альтернатива?

Дані

R

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

пітон

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007,

     0.002, 0.002, -0.004, 0.015, 0.002, -0.001, -0.008, 0.01, -0.018, 0.046]

петлі

R

sign_indicator <- ifelse(x > 0, 1,-1)
number_of_sequence <- rep(NA, 20)
n <- 1
for (i in 2:20) {
  if (sign_indicator[i] == sign_indicator[i - 1]) {
    n <- n + 1
  } else{
    n <- 1
  }
  number_of_sequence[i] <- n

}
number_of_sequence[1] <- 1

#############################

summation <- rep(NA, 20)

for (i in 1:20) {
  summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}

пітон

sign_indicator = [1 if i > 0 else -1 for i in X]

number_of_sequence = [1]
N = 1
for i in range(1, len(sign_indicator)):
    if sign_indicator[i] == sign_indicator[i - 1]:
        N += 1
    else:
        N = 1
    number_of_sequence.append(N)

#############################
summation = []

for i in range(len(X)):
    if number_of_sequence[i] == 1:          
          summation.append(X[i])

    else:
        summation.append(sum(X[(i + 1 - number_of_sequence[i]):(i + 1)]))

результат

        x n_of_sequence    sum
1  -0.010             1 -0.010
2   0.003             1  0.003
3  -0.002             1 -0.002
4   0.018             1  0.018
5   0.002             2  0.020
6   0.006             3  0.026
7  -0.012             1 -0.012
8   0.014             1  0.014
9  -0.017             1 -0.017
10 -0.007             2 -0.024
11  0.002             1  0.002
12  0.002             2  0.004
13 -0.004             1 -0.004
14  0.015             1  0.015
15  0.002             2  0.017
16 -0.001             1 -0.001
17 -0.008             2 -0.009
18  0.010             1  0.010
19 -0.018             1 -0.018
20  0.046             1  0.046

Відповіді:


17

Інші рішення виглядають нормально, але вам не потрібно використовувати складні мовні функції або бібліотечні функції для цієї простої проблеми.

result, prev = [], None

for idx, cur in enumerate(x):
    if not prev or (prev > 0) != (cur > 0):
        n, summation = 1, cur
    else:
        n, summation = n + 1, summation + cur
    result.append((idx, cur, n, summation))
    prev = cur

Як бачите, вам насправді не потрібен sign_indicatorсписок, дві фор-петлі або rangeфункція, як у фрагменті в розділі запитань.

Якщо ви хочете, щоб індекс починався з 1, використовуйте enumerate(x, 1)замістьenumerate(x)

Щоб побачити результат, ви можете запустити наступний код

for idx, num, length, summation in result:
     print(f"{idx: >2d} {num: .3f} {length: >2d} {summation: .3f}")

14

У R ви можете використовувати data.tables rleidдля створення груп із позитивними та від’ємними рядами чисел, а потім створити послідовність рядків у кожній групі та зробити сукупну суму xзначень.

library(data.table)
df <- data.table(x)
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)), by = rleid(sign(x))]
df

#         x n_of_sequence    sum
# 1: -0.010             1 -0.010
# 2:  0.003             1  0.003
# 3: -0.002             1 -0.002
# 4:  0.018             1  0.018
# 5:  0.002             2  0.020
# 6:  0.006             3  0.026
# 7: -0.012             1 -0.012
# 8:  0.014             1  0.014
# 9: -0.017             1 -0.017
#10: -0.007             2 -0.024
#11:  0.002             1  0.002
#12:  0.002             2  0.004
#13: -0.004             1 -0.004
#14:  0.015             1  0.015
#15:  0.002             2  0.017
#16: -0.001             1 -0.001
#17: -0.008             2 -0.009
#18:  0.010             1  0.010
#19: -0.018             1 -0.018
#20:  0.046             1  0.046

Ми можемо використовувати rleidв dplyrякості добре для створення груп і зробити те ж саме.

library(dplyr)
df %>%
  group_by(gr = data.table::rleid(sign(x))) %>%
  mutate(n_of_sequence = row_number(), sum = cumsum(x))

2
n_of_sequenceне тотожне бажаному
Іман

@Iman Вибачте, я неправильно прочитав вихід раніше. Я зараз це виправив.
Ронак Шах

10

Ви можете обчислити довжину пробігу кожного знака, використовуючи rleвід baseі зробити щось подібне.

set.seed(0)
z <- round(rnorm(20, sd = 0.02), 3)
run_lengths <- rle(sign(z))$lengths
run_lengths
# [1] 1 1 1 3 1 1 2 2 1 2 2 1 1 1

Отримати n_of_sequence

n_of_sequence <- run_lengths %>% map(seq) %>% unlist
n_of_sequence
# [1] 1 1 1 1 2 3 1 1 1 2 1 2 1 1 2 1 2 1 1 1

Нарешті, щоб отримати підсумки послідовностей,

start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series 
map2(start,run_lengths,~cumsum(z[.x:(.x+.y-1)])) %>% unlist()
# [1] -0.010  0.003 -0.002  0.018  0.020  0.026 -0.012  0.014 -0.017 -0.024
# [11]  0.002  0.004 -0.004  0.015  0.017 -0.001 -0.009  0.010 -0.018  0.046

6

Ось проста функція без циклу в R:

count_and_sum <- function(x)
{
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}

Отже, ви можете зробити:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
count_and_sum(x)
#>         x n    sum
#> 1  -0.010 1 -0.010
#> 2   0.003 1  0.003
#> 3  -0.002 1 -0.002
#> 4   0.018 1  0.018
#> 5   0.002 2  0.020
#> 6   0.006 3  0.026
#> 7  -0.012 1 -0.012
#> 8   0.014 1  0.014
#> 9  -0.017 1 -0.017
#> 10 -0.007 2 -0.024
#> 11  0.002 1  0.002
#> 12  0.002 2  0.004
#> 13 -0.004 1 -0.004
#> 14  0.015 1  0.015
#> 15  0.002 2  0.017
#> 16 -0.001 1 -0.001
#> 17 -0.008 2 -0.009
#> 18  0.010 1  0.010
#> 19 -0.018 1 -0.018
#> 20  0.046 1  0.046

Створено 2020-02-16 пакетом reprex (v0.3.0)


5

Ось просте tidyverseрішення ...

library(tidyverse) #or just dplyr and tidyr

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

df <- tibble(x = x) %>% 
  mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
  group_by(seqno) %>%                                  #group by sequences
  mutate(n_of_sequence = row_number(),                 #count row numbers for each group
         sum = cumsum(x)) %>%                          #cumulative sum for each group
  ungroup() %>% 
  select(-seqno)                                       #remove sequence id

df
# A tibble: 20 x 3
        x n_of_sequence     sum
    <dbl>         <int>   <dbl>
 1 -0.01              1 -0.01  
 2  0.003             1  0.003 
 3 -0.002             1 -0.002 
 4  0.018             1  0.018 
 5  0.002             2  0.0200
 6  0.006             3  0.026 
 7 -0.012             1 -0.012 
 8  0.014             1  0.014 
 9 -0.017             1 -0.017 
10 -0.007             2 -0.024 
11  0.002             1  0.002 
12  0.002             2  0.004 
13 -0.004             1 -0.004 
14  0.015             1  0.015 
15  0.002             2  0.017 
16 -0.001             1 -0.001 
17 -0.008             2 -0.009 
18  0.01              1  0.01  
19 -0.018             1 -0.018 
20  0.046             1  0.046 

5

Що стосується Python, хтось придумає рішення, використовуючи бібліотеку панд. А поки ось проста пропозиція:

class Combiner:
    def __init__(self):
        self.index = self.seq_index = self.summation = 0

    def combine(self, value):
        self.index += 1
        if value * self.summation <= 0:
            self.seq_index = 1
            self.summation = value
        else:
            self.seq_index += 1
            self.summation += value
        return self.index, value, self.seq_index, self.summation

c = Combiner()
lst = [c.combine(v) for v in x]

for t in lst:
    print(f"{t[0]:3} {t[1]:7.3f} {t[2]:3} {t[3]:7.3f}")

Вихід:

  1  -0.010   1  -0.010
  2   0.003   1   0.003
  3  -0.002   1  -0.002
  4   0.018   1   0.018
  5   0.002   2   0.020
  6   0.006   3   0.026
  7  -0.012   1  -0.012
  8   0.014   1   0.014
  9  -0.017   1  -0.017
 10  -0.007   2  -0.024
 11   0.002   1   0.002
 12   0.002   2   0.004
 13  -0.004   1  -0.004
 14   0.015   1   0.015
 15   0.002   2   0.017
 16  -0.001   1  -0.001
 17  -0.008   2  -0.009
 18   0.010   1   0.010
 19  -0.018   1  -0.018
 20   0.046   1   0.046

Якщо вам потрібні окремі списки, ви можете це зробити

idxs, vals, seqs, sums = (list(tpl) for tpl in zip(*lst))

або, якщо ітератори добре, просто

idxs, vals, seqs, sums = zip(*lst)

(пояснення тут )


5

Два різних ледачих рішення в Python, використовуючи модуль itertools .

Використання itertools.groupby (та накопичення)

from itertools import accumulate, groupby

result = (
    item
    for _, group in groupby(x, key=lambda n: n < 0)
    for item in enumerate(accumulate(group), 1)
)

Використання itertools.accumute за допомогою спеціальної функції накопичення

from itertools import accumulate

def sign_count_sum(count_sum, value):
    count, prev_sum = count_sum
    same_sign = (prev_sum < 0) is (value < 0)
    if same_sign:
        return count + 1, prev_sum + value
    else:
        return 1, value

result = accumulate(x, sign_count_sum, initial=(0, 0))
next(result)  # needed to skip the initial (0, 0) item

Аргумент initialключового слова було додано в Python 3.8. У попередніх версіях ви можете використовувати itertools.chainдля додавання (0,0) -двох:

result = accumulate(chain([(0, 0)], x), sign_count_sum)

Вихід, як очікувалося:

for (i, v), (c, s) in zip(enumerate(x), result):
    print(f"{i:3} {v:7.3f} {c:3} {s:7.3f}")
  0  -0.010   1  -0.010
  1   0.003   1   0.003
  2  -0.002   1  -0.002
  3   0.018   1   0.018
  4   0.002   2   0.020
  5   0.006   3   0.026
  6  -0.012   1  -0.012
  7   0.014   1   0.014
  8  -0.017   1  -0.017
  9  -0.007   2  -0.024
 10   0.002   1   0.002
 11   0.002   2   0.004
 12  -0.004   1  -0.004
 13   0.015   1   0.015
 14   0.002   2   0.017
 15  -0.001   1  -0.001
 16  -0.008   2  -0.009
 17   0.010   1   0.010
 18  -0.018   1  -0.018
 19   0.046   1   0.046

5

Я рекомендую R пакунок бігуна для подібних операцій. streak_run обчислює послідовне виникнення одного і того ж значення, а sum_run обчислює суму у вікні, довжина якої визначається kаргументом.

Ось рішення:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)

data.frame(x, n_of_sequence, sum)

#         x n_of_sequence    sum
# 1  -0.010             1 -0.010
# 2   0.003             1  0.003
# 3  -0.002             1 -0.002
# 4   0.018             1  0.018
# 5   0.002             2  0.020
# 6   0.006             3  0.026
# 7  -0.012             1 -0.012
# 8   0.014             1  0.014
# 9  -0.017             1 -0.017
# 10 -0.007             2 -0.024
# 11  0.002             1  0.002
# 12  0.002             2  0.004
# 13 -0.004             1 -0.004
# 14  0.015             1  0.015
# 15  0.002             2  0.017
# 16 -0.001             1 -0.001
# 17 -0.008             2 -0.009
# 18  0.010             1  0.010
# 19 -0.018             1 -0.018
# 20  0.046             1  0.046

Нижче орієнтир для порівняння фактичних рішень

set.seed(0)
x <- round(rnorm(10000, sd = 0.02), 3)

library(runner)
runner_streak <- function(x) {
  n_of_sequence <- streak_run(x > 0)
  sum <- sum_run(x, k = n_of_sequence)
}

library(data.table)
dt <- data.table(x)
dt_streak <- function(dt) {
  dt[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}

rle_streak <- function(x) {
  run_lengths <- rle(sign(x))$lengths
  run_lengths

  n_of_sequence <- run_lengths %>% map(seq) %>% unlist

  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)]
  sum <- map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}

library(tidyverse)
df <- tibble(x = x)
tv_streak <- function(x) {
  res <- df %>%
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>%
    group_by(seqno) %>%
    mutate(n_of_sequence = row_number(),
           sum = cumsum(x)) %>%
    ungroup() %>% 
    select(-seqno)  
}

count_and_sum <- function(x) {
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) 
    data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}
microbenchmark::microbenchmark(
  runner_streak(x),
  dt_streak(dt),
  rle_streak(x),
  tv_streak(df),
  count_and_sum(x),
  times = 100L
)


# Unit: milliseconds
#             expr         min          lq        mean      median          uq        max neval
# runner_streak(x)    4.240192    4.833563    6.321697    5.300817    6.543926   14.80221   100
#    dt_streak(dt)    7.648100    8.587887   10.862806    9.650483   11.295488   34.66027   100
#    rle_streak(x)   42.321506   55.397586   64.195692   63.404403   67.813738  167.71444   100
#    tv_streak(df)   31.398885   36.333751   45.141452   40.800077   45.756279  163.19535   100
# count_and_sum(x) 1691.438977 1919.518282 2306.036783 2149.543281 2499.951020 6158.43384   100

1
вимірювання в мікросекундах не має великого сенсу. Деякі функції мають початкові накладні витрати в мікросекундах, але вони масштабуються для великих наборів даних набагато краще, ніж інші. Також df <- data.table(x)є повна копія даних. Крім того, ви друкуєте дані в деяких прикладах (що є іншою повною копією), а не в інших.
Девід Аренбург

Ви праві, виправлені.
GoGonzo

деякі функції повертають різні об'єкти - деякі вектори та деякі фрейми даних - тому це все ще не є досить справедливим орієнтиром. Також деякі дають різні результати. Спробуйте r = runner_streak(x); d = dt_streak(dt) ; all.equal(r, d$sum). Тільки перевірені кілька bbut tv_streakте саме, що dt_streak; count_and_sumдає те саме, runner_streakщо відрізняються від попередніх двох.
користувач2957945

3

У R ви також можете зробити:

# DATA
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

library(data.table)
dt <- data.table(x = x)

# Create Positive or Negative variable
dt$x_logical <- ifelse(dt$x > 0, "P", "N")

# Create a reference data.frame/table to keep continuous counts
seq_dt <- data.frame(val = rle(x = dt$x_logical)$lengths)
seq_dt$id <- 1:nrow(seq_dt)

# Map id in the main data.table and get cumulative sum
dt$id <- rep(seq_dt$id, seq_dt$val)
dt[, csum := cumsum(x), by = "id"]


        x x_logical id   csum
 1: -0.010         N  1 -0.010
 2:  0.003         P  2  0.003
 3: -0.002         N  3 -0.002
 4:  0.018         P  4  0.018
 5:  0.002         P  4  0.020
 6:  0.006         P  4  0.026
 7: -0.012         N  5 -0.012
 8:  0.014         P  6  0.014
 9: -0.017         N  7 -0.017
10: -0.007         N  7 -0.024
11:  0.002         P  8  0.002
12:  0.002         P  8  0.004
13: -0.004         N  9 -0.004
14:  0.015         P 10  0.015
15:  0.002         P 10  0.017
16: -0.001         N 11 -0.001
17: -0.008         N 11 -0.009
18:  0.010         P 12  0.010
19: -0.018         N 13 -0.018
20:  0.046         P 14  0.046

3

Кидаючи мою [r] відповідь у шапку, оптимізовану для швидкості та працює з будь-якою довжиною x (на відміну від запитувача, який був жорстко закодований на довжину 20):

### data 
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

І, щоб порівняти час роботи на моєму поточному (дуже повільному) робочому комп’ютері, ось висновок мого мікробензика з використанням усіх R-рішень у цій темі. Не дивно, що рішення, які роблять більшість копій та конверсій, як правило, повільніше.

Unit: microseconds
         expr      min       lq       mean    median       uq      max neval
     my_way()   13.301   19.200   23.38352   21.4010   23.401  20604.0 1e+05
 author_way()   19.702   31.701   40.12371   36.0015   40.502  24393.9 1e+05
      ronak()  856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
      ameer()  388.501  452.002  553.08263  491.3000  548.701 456156.6 1e+05
     andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
      gonzo()   21.901   35.502   48.84946   43.9010   51.001  29519.5 1e+05

-------------- EDIT -------------- @nicola вказував, що моє рішення не найшвидше для довших довжин x - що має бути досить очевидним, оскільки я постійно роблю копії векторів, використовуючи дзвінки, такі як x <- c (x, y). Я створив лише найшвидше рішення для довжини = 20 і просто мікробне позначення настільки низький, наскільки міг би досягти цього.

Щоб зробити більш справедливим порівняння, я відредагував усі версії, щоб генерувати оригінальний код так, як я вважаю, було б найшвидшим, але я вітаю відгуки про це. Ось мій повний код бенчмаркінгу та результати для моєї дуже повільної системи. Я вітаю будь-які відгуки.

# originally benchmarked a few different lengths
for(pie in c(100000)){


my_way<- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

# print(summation)
}




author_way <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)

  sign_indicator <- ifelse(x > 0, 1,-1)
  sky <- length(x)
  number_of_sequence <- rep(NA, sky)
  n <- 1
  for (i in 2:sky) {
    if (sign_indicator[i] == sign_indicator[i - 1]) {
      n <- n + 1
    } else{
      n <- 1
    }
    number_of_sequence[i] <- n

  }
  number_of_sequence[1] <- 1

  #############################

  summation <- rep(NA, sky)

  for (i in 1:sky) {
    summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
  }
}


# other ppls solutions:




ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}



ameer <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  run_lengths <- rle(sign(x))$lengths
  n_of_sequence <- run_lengths %>% map(seq) %>% unlist
  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)] # start points of each series 
  map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()

}


count_and_sum <- function(x){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}



andrew <- function(){
  set.seed(100)
  df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>% 
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
    group_by(seqno) %>%                                  #group by sequences
    mutate(n_of_sequence = row_number(),                 #count row numbers for each group
           sum = cumsum(x)) %>%                          #cumulative sum for each group
    ungroup() %>% 
    select(-seqno) 
}

gonzo <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  n_of_sequence <- runner::streak_run(x > 0)
  sum <- runner::sum_run(x, k = n_of_sequence)
}



mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)

}

Як показують ці результати, для моєї іншої тривалості, ніж те, що я оптимізував, моя версія повільна. Чим довший х, тим повільніше він стає до смішного уповільнення всього вище 1000. Моя улюблена версія - це Ronak, який є лише другим найшвидшим у моїй системі. GoGonzo - найшвидший на моїй машині на сьогоднішній день на цих більших довжинах.

Unit: milliseconds
         expr        min         lq        mean      median         uq        max neval
     my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105    10
 author_way()    82.2465    83.0873    89.42343    84.78315    85.3638   115.4550    10
      ronak()    68.3922    69.3067    70.41924    69.84625    71.3509    74.7070    10
      ameer()   481.4566   509.7552   521.19034   514.77000   530.1121   579.4707    10
     andrew()   200.9654   202.1898   210.84914   206.20465   211.2006   233.7618    10
      gonzo()    27.3317    28.2550    28.66679    28.50535    28.9104    29.9549    10

Крім того, інші відповіді працюють на будь-яку довжину, і ваш орієнтир повинен мати певну проблему. Щодо рішення data.table@ Ронака, ваш порядок набирає величини повільніше на довжину ~ 100000.
nicola

Дякую @nicola, я лише сказав, що рішення запитувача працювало лише на 20 пунктів, а не на інше рішення - вони насправді так і є. Я також оптимізував швидкість для довжини 20 предметів, тому моя претензія на те, що я швидко закінчується. Що для того варто, мені також подобалося рішення Ронакса як найкраще, але автор явно попросив більше різних способів вирішення проблеми. Ronak's вже швидше і на 1000.
Adverse_Event

І розширити на мікробензик. Я перекодував свій орієнтир, щоб кожне рішення створювало (x) у форматі, який вони використовують, тому ті, які роблять tibbles, генерують x у виклику tibble, те саме для data.table тощо. (просто збережу довжину x у змінній та замінивши 20 на неї. Потім я запустив її на довжину 100 000 за 10 ітерацій. Зауважте, що мій комп'ютер надмірно повільний, він працює на 5-му інтер-процесорі з ddr3 на 1600 мГц. Я
редагую

2

У Python, крім визначення класу для зберігання змінних пам'яті, ви можете використовувати закриття для досягнення того ж.

def run():
    count = 0
    last_sign = 0

    def sign(i):
        return 1 if i > 0 else -1

    def f(i):
        nonlocal count
        nonlocal last_sign
        if sign(i) == last_sign:
            count = count+1
        else:
            last_sign = sign(i)
            count = 1
        return count

    return f

f = run()
y = [f(i) for i in x]

Зверніть увагу, це працює лише для Python 3 (в Python 2, я думаю, ви не можете змінити змінну закриття, як це). Аналогічна річ і для підсумовування.


2

Я думаю, що цикл буде простішим для читання, але просто для задоволення, ось рішення в Python за допомогою рекурсії:

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007, 0.002, 0.002, -0.004, 0.015, 0.002,
     -0.001, -0.008, 0.01, -0.018, 0.046]


def sign(number):
    return 1 if number > 0 else -1


def sum_previous(pos, result=None):
    if not result:
        result = x[pos]
    else:
        result += x[pos]
    if pos == 0 or sign(x[pos]) != sign(x[pos-1]):
        return result
    else:
        return sum_previous(pos-1, result)


results = [sum_previous(i) for i in range(len(x))]
print(results)

2

Ось ще один базовий підхід R:

data.frame(x,
           n = sequence(rle(sign(x))$lengths),
           sum = Reduce(function(x, y) if (sign(x) == sign(y)) x + y else y, x, accumulate = TRUE))

        x n    sum
1  -0.010 1 -0.010
2   0.003 1  0.003
3  -0.002 1 -0.002
4   0.018 1  0.018
5   0.002 2  0.020
6   0.006 3  0.026
7  -0.012 1 -0.012
8   0.014 1  0.014
9  -0.017 1 -0.017
10 -0.007 2 -0.024
11  0.002 1  0.002
12  0.002 2  0.004
13 -0.004 1 -0.004
14  0.015 1  0.015
15  0.002 2  0.017
16 -0.001 1 -0.001
17 -0.008 2 -0.009
18  0.010 1  0.010
19 -0.018 1 -0.018
20  0.046 1  0.046

Тільки для того, щоб ніпкік, Reduceховає петлю, тож це не розв'язувальне рішення.
nicola

2

Проста відповідь пітона, ігнорує випадок 0:

x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
     -0.017, -0.007, 0.002, 0.002, 
     -0.004, 0.015, 0.002, -0.001, 
     -0.008, 0.01, -0.018, 0.046]

count = 0
sign_positive = x[0] > 0
sign_count = []
for n in x:
    # the idea is to keep track of the sign and increment the 
    # count if it agrees with the current number we are looking at
    if (n > 0 and sign_positive) or (n < 0 and not sign_positive):
        count = count + 1
    # if it does not, the count goes back to 1
    else:
        count = 1
    # Whether we increased the count or not, we update whether the
    # sign was positive or negative
    sign_positive = n > 0
    sign_count.append(count)

# This is just to reproduce the output 
# (although I find the last repetition of the number unnecessary)    
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.002  1  0.002
11  0.002  2  0.002
12 -0.004  1 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046

Трохи більш досконале рішення, а також стосується випадку 0:

# To test the 0 case I am changing two numbers to 0
x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
    -0.017, -0.007, 0, 0, 
    -0.004, 0.015, 0.002, -0.001, 
    -0.008, 0.01, -0.018, 0.046]

# The rest is similar
count = 0
# This time we are using a nested ternary assignment 
# to account for the case of 0
# This would be more readable as a function, 
# but what it does is simple
# It returns None if n is 0, 
# True if it is larger than 0 
# and False if it less than 0
sign_positive = None if n == 0 else False if n < 0 else True
sign_count = []
for n in x:
    # We add the case of 0 by adding a third condition where
    # sign_positive was None (meaning the previous
    # number was 0) and the current number is 0.
    if (n > 0 and sign_positive) or \
       (n < 0 and not sign_positive) or \
       (n == 0 and sign_positive == None):
        count = count + 1
    else:
        count = 1
    sign_positive = None if n == 0 else False if n < 0 else True
    sign_count.append(count)
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.000  1  0.000
11  0.000  2  0.000
12 -0.004  3 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.