Я взяв рішення від Jesper і додав до нього деяку агрегацію при багаторазовому виконанні одного і того ж коду
def time[R](block: => R) = {
def print_result(s: String, ns: Long) = {
val formatter = java.text.NumberFormat.getIntegerInstance
println("%-16s".format(s) + formatter.format(ns) + " ns")
}
var t0 = System.nanoTime()
var result = block // call-by-name
var t1 = System.nanoTime()
print_result("First Run", (t1 - t0))
var lst = for (i <- 1 to 10) yield {
t0 = System.nanoTime()
result = block // call-by-name
t1 = System.nanoTime()
print_result("Run #" + i, (t1 - t0))
(t1 - t0).toLong
}
print_result("Max", lst.max)
print_result("Min", lst.min)
print_result("Avg", (lst.sum / lst.length))
}
Припустимо , ви хочете , щоб час дві функції counter_new
і counter_old
наступне є використання:
scala> time {counter_new(lst)}
First Run 2,963,261,456 ns
Run #1 1,486,928,576 ns
Run #2 1,321,499,030 ns
Run #3 1,461,277,950 ns
Run #4 1,299,298,316 ns
Run #5 1,459,163,587 ns
Run #6 1,318,305,378 ns
Run #7 1,473,063,405 ns
Run #8 1,482,330,042 ns
Run #9 1,318,320,459 ns
Run #10 1,453,722,468 ns
Max 1,486,928,576 ns
Min 1,299,298,316 ns
Avg 1,407,390,921 ns
scala> time {counter_old(lst)}
First Run 444,795,051 ns
Run #1 1,455,528,106 ns
Run #2 586,305,699 ns
Run #3 2,085,802,554 ns
Run #4 579,028,408 ns
Run #5 582,701,806 ns
Run #6 403,933,518 ns
Run #7 562,429,973 ns
Run #8 572,927,876 ns
Run #9 570,280,691 ns
Run #10 580,869,246 ns
Max 2,085,802,554 ns
Min 403,933,518 ns
Avg 797,980,787 ns
Сподіваємось, це корисно