Ще одна альтернатива - використовувати einsum
функцію numpy для будь-якого масиву:
In [1]: import numpy as np
In [2]: a = np.arange(1200.0).reshape((-1,3))
In [3]: %timeit [np.linalg.norm(x) for x in a]
100 loops, best of 3: 3.86 ms per loop
In [4]: %timeit np.sqrt((a*a).sum(axis=1))
100000 loops, best of 3: 15.6 µs per loop
In [5]: %timeit np.sqrt(np.einsum('ij,ij->i',a,a))
100000 loops, best of 3: 8.71 µs per loop
або вектори:
In [5]: a = np.arange(100000)
In [6]: %timeit np.sqrt(a.dot(a))
10000 loops, best of 3: 80.8 µs per loop
In [7]: %timeit np.sqrt(np.einsum('i,i', a, a))
10000 loops, best of 3: 60.6 µs per loop
Однак, здається, є деякі накладні витрати, пов’язані з викликом його, що може зробити його повільнішим з невеликими введеннями:
In [2]: a = np.arange(100)
In [3]: %timeit np.sqrt(a.dot(a))
100000 loops, best of 3: 3.73 µs per loop
In [4]: %timeit np.sqrt(np.einsum('i,i', a, a))
100000 loops, best of 3: 4.68 µs per loop
linalg.norm
як було сказано нижче. Але трохи простіша річ, ніж ваша лямбда, без імпорту, простоsum(x*x)**0.5