Мотивація
Багато наборів даних є досить великими, що нам потрібно дбати про швидкість / ефективність. Тому я пропоную це рішення в такому дусі. Це буває і стислим.
Для порівняння давайте опустимо index
стовпчик
df = data_set.drop('index', 1)
Рішення
Я запропоную використовувати zip
таmap
list(zip(*map(df.get, df)))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Це може бути також гнучким, якщо ми хотіли мати справу з певним набором стовпців. Ми припустимо, що стовпці, які ми вже відображали, - це підмножина, яку ми хочемо.
list(zip(*map(df.get, ['data_date', 'data_1', 'data_2'])))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Що таке швидше?
Поворот records
швидко виходить з асимптотично сходяться zipmap
іiter_tuples
Я буду використовувати бібліотеку, simple_benchmarks
яку я отримав з цієї посади
from simple_benchmark import BenchmarkBuilder
b = BenchmarkBuilder()
import pandas as pd
import numpy as np
def tuple_comp(df): return [tuple(x) for x in df.to_numpy()]
def iter_namedtuples(df): return list(df.itertuples(index=False))
def iter_tuples(df): return list(df.itertuples(index=False, name=None))
def records(df): return df.to_records(index=False).tolist()
def zipmap(df): return list(zip(*map(df.get, df)))
funcs = [tuple_comp, iter_namedtuples, iter_tuples, records, zipmap]
for func in funcs:
b.add_function()(func)
def creator(n):
return pd.DataFrame({"A": random.randint(n, size=n), "B": random.randint(n, size=n)})
@b.add_arguments('Rows in DataFrame')
def argument_provider():
for n in (10 ** (np.arange(4, 11) / 2)).astype(int):
yield n, creator(n)
r = b.run()
Перевірте результати
r.to_pandas_dataframe().pipe(lambda d: d.div(d.min(1), 0))
tuple_comp iter_namedtuples iter_tuples records zipmap
100 2.905662 6.626308 3.450741 1.469471 1.000000
316 4.612692 4.814433 2.375874 1.096352 1.000000
1000 6.513121 4.106426 1.958293 1.000000 1.316303
3162 8.446138 4.082161 1.808339 1.000000 1.533605
10000 8.424483 3.621461 1.651831 1.000000 1.558592
31622 7.813803 3.386592 1.586483 1.000000 1.515478
100000 7.050572 3.162426 1.499977 1.000000 1.480131
r.plot()
list(df.itertuples(index=False, name=None))