I shall try to give an intuition. The way we could probably think is : "One Dirac delta gives us a 1 in frequency domain. Now I give infinite number of Dirac deltas. Shouldn't I get a higher DC?"
Now let us see whether by adding all those frequency components mentioned in the Dirac comb in the frequency domain(FD), we get another Dirac comb in time domain(TD). We are adding continuous waveforms and getting deltas at discrete points. Sounds weird.
Coming back to the FD. We have a Dirac comb with spacing ω0. To put it in words, we have deltas at 0,±ω0,±2ω0,±3ω0 and so on. We thus have a DC and infinite number of cosines, namely cos(ω0t),cos(2ω0t),cos(3ω0t) and so on.
Let's consider points in time domain corresponding to t=2nπω0. All the above cosine waves will give us value 1. Hence they all add up and give us non zero value at those points. Now what about any other t? We need to get convinced that they will all add up to zero.
Now deviating slightly, let's consider a waveform cos(kn);n=0,1,2,3,4...∞. We know that unless k can be expressed as a fraction multiplied by π, it's aperiodic. What does that mean? There is not a single repeating sample. Each of the samples are unique. Looking it from another perspective, we have infinite number of samples which are unique and part of a cosine wave. This means taking all the infinite points, we will be able to construct a single CONTINUOUS cosine wave completely once. What if cos(kn) is periodic? We already know that the sum of samples will be zero periodically based on value of k. Hence, sum of all the samples of cos(kn) will give us zero for any value of k, except k=2π's multiple.
Returning back to our original problem : We now take an arbitrary t=t0≠2rπ. Now we have cos(0ω0t0)[dc]+cos(ω0t0)+cos(2ω0t0)+cos(3ω0t0)....as the value at t=t0. But we have already proved this infinite sum =0 for any t except t=2nπω0, where all these cosines add up to give dirac deltas.