Що означає «інваріант перестановки» у контексті нейронних мереж, що розпізнають зображення?


Відповіді:


17

У цьому контексті це стосується того, що модель не передбачає ніяких просторових зв’язків між ознаками. Наприклад, для багатошарового перцептрона, ви можете переставити пікселі, а продуктивність буде однаковою. Це не стосується конволюційних мереж, які передбачають сусідські відносини.


1
так, це заплутана частина. Чи не має бути просторових співвідношень у класифікації цифр?
RockTheStar

1
MNIST широко використовується як орієнтир (або перевірка здоровості) в нейронних мережах. Якщо ваша модель може отримати <1% помилки при перестановці інваріантного MNIST, ви переходите до чогось.
байерж

1
Так, я маю на увазі, чи не існує просторових відносин у цифрах? Якщо перестановити цифрові пікселі, це змінить порядок пікселів, що істотно впливає на продуктивність !?
RockTheStar

1
Тільки якщо модель передбачає це. mlps не роблять, convnets роблять. Ось чому порівнювати конвент з mlp на mnist дещо несправедливо.
bayerj

1
Я бачу! Отож, у наборі даних із списку даних, чи є кращі mlps ефективнішими або convnet?
RockTheStar

6

Функція векторного аргументу є перестановкою інваріантною, якщо значення не змінюється, якщо ми перестановлюємо компоненти , тобто, наприклад, коли : тощо.x = ( x 1 , , x n ) f x n = 3 f ( ( x 1 , x 2 , x 3 ) ) = f ( ( x 2 , x 1 , x 3 ) ) = f ( ( x 3 , х 1 , х 2 ) )fx=(x1,,xn)fxn=3

f((x1,x2,x3))=f((x2,x1,x3))=f((x3,x1,x2))

1
Ця відповідь трохи вводить в оману, тому що в машинному навчанні алгоритм навчання часто є інваріантним перестановкою, тоді як функція, яку він повертає, не є.
bayerj

@bayerj: Це цікава інформація, але я не можу побачити, що вона дає визначення, яке я дав, вводить в оману , це правильне визначення, але, можливо, не повна відповідь у цьому контексті.
kjetil b halvorsen

Ви праві, визначення правильне. Але це не застосовується в тому, як ви це записуєте. В умовах перестановки інваріантного MNIST, про який запитував ОП, функції форми, яку ви записуєте, не виникають.
bayerj
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.