Проведення ймовірнісних експериментів у Mathematica
Mathematica пропонує дуже зручні рамки для роботи з ймовірностями та розподілами, і - хоча головне питання відповідних лімітів було вирішено - я хотів би використати це питання, щоб зробити це більш зрозумілим і, можливо, корисним як орієнтир.
Давайте просто зробимо експерименти повторювані та визначимо кілька варіантів сюжету, щоб вони відповідали нашому смаку:
SeedRandom["Repeatable_151115"];
$PlotTheme = "Detailed";
SetOptions[Plot, Filling -> Axis];
SetOptions[DiscretePlot, ExtentSize -> Scaled[0.5], PlotMarkers -> "Point"];
Робота з параметричними розподілами
Тепер ми можемо визначити асимптотичний розподіл для однієї події, яка є пропорцією голів у кидках (справедливої) монети:πn
distProportionTenCoinThrows = With[
{
n = 10, (* number of coin throws *)
p = 1/2 (* fair coin probability of head*)
},
(* derive the distribution for the proportion of heads *)
TransformedDistribution[
x/n,
x \[Distributed] BinomialDistribution[ n, p ]
];
With[
{
pr = PlotRange -> {{0, 1}, {0, 0.25}}
},
theoreticalPlot = DiscretePlot[
Evaluate @ PDF[ distProportionTenCoinThrows, p ],
{p, 0, 1, 0.1},
pr
];
(* show plot with colored range *)
Show @ {
theoreticalPlot,
DiscretePlot[
Evaluate @ PDF[ distProportionTenCoinThrows, p ],
{p, 0.4, 0.6, 0.1},
pr,
FillingStyle -> Red,
PlotLegends -> None
]
}
]
Що дає нам графік дискретного розподілу пропорцій:
Ми можемо використати розподіл негайно для обчислення ймовірностей для і :Pr[0.4≤π≤0.6|π∼B(10,12)]Pr[0.4<π<0.6|π∼B(10,12)]
{
Probability[ 0.4 <= p <= 0.6, p \[Distributed] distProportionTenCoinThrows ],
Probability[ 0.4 < p < 0.6, p \[Distributed] distProportionTenCoinThrows ]
} // N
{0.65625, 0.246094}
Робити експерименти в Монте-Карло
Ми можемо використовувати розподіл для однієї події для багаторазової вибірки з нього (Монте-Карло).
distProportionsOneMillionCoinThrows = With[
{
sampleSize = 1000000
},
EmpiricalDistribution[
RandomVariate[
distProportionTenCoinThrows,
sampleSize
]
]
];
empiricalPlot =
DiscretePlot[
Evaluate@PDF[ distProportionsOneMillionCoinThrows, p ],
{p, 0, 1, 0.1},
PlotRange -> {{0, 1}, {0, 0.25}} ,
ExtentSize -> None,
PlotLegends -> None,
PlotStyle -> Red
]
]
Порівнюючи це з теоретичним / асимптотичним розподілом, видно, що все, що дуже сильно вписується в:
Show @ {
theoreticalPlot,
empiricalPlot
}