Виміри подібності або відстані між двома матрицями коваріації


28

Чи є заходи подібності чи відстані між двома симетричними матрицями коваріації (обидві мають однакові розміри)?

Я маю на увазі аналоги KL-розбіжності двох розподілів ймовірностей або евклідової відстані між векторами, за винятком матриць. Я думаю, було б досить багато вимірювань подібності.

В ідеалі я також хотів би перевірити нульову гіпотезу про те, що дві матриці коваріації однакові.


3
відповіді на це питання: Quant.stackexchange.com/q/121/108 може бути корисним.
shabbychef

2
відмінне запитання та відповідь за посиланням - спасибі - так, саме тут я їхав :)
Рам Ахлувалія

Відповіді:


21

Ви можете використовувати будь-яку норму (див. Вікіпедію про різні норми; зауважте, що квадратний корінь суми квадратних відстаней \ sqrt {\ sum_ {i, j} (a_ {ij} -b_ {ij}) ^ 2} , називається нормою Фробеніуса і відрізняється від норми L_2 , яка є квадратним коренем найбільшого власного значення (AB) ^ 2 , хоча, звичайно, вони породжували б ту саму топологію). Відстань KL між двома нормальними розподілами з однаковими засобами (скажімо нуль) та двома конкретними матрицями коваріації також доступна у Вікіпедії як \ frac12 [\ mbox {tr} (A ^ {- 1} B) - \ mbox {ln } (| B | / | A |)] .ABpi,j(aijbij)2L2(AB)212[tr(A1B)ln(|B|/|A|)]

Редагувати: якщо одна з матриць є матрицею, що має на увазі модель, а інша - матриця зразкової коваріації, то, звичайно, ви можете сформувати тест на коефіцієнт ймовірності між ними. Моя особиста улюблена колекція таких тестів для простих структур наведена у методах багатовимірного аналізу Rencher (2002) . Більш прогресивні випадки висвітлюються в коваріаційному моделюванні структури, на якій розумною відправною точкою є структурні рівняння Боллена (1989) з латентними змінними .


у мене проблема з : вона не дає однакового значення, якщо перестановити і (реальна відстань має бути симетричною). 1/2(tr(A1B)log(|B|/|A|))AB
user603

У мене проблема з : це не афінний еквівалент (якщо ви обертаєте матриці, там змінюються відстані!). Крім того, вам слід якось масштабувати свої матриці (вони можуть бути виміряні в дуже різних одиницях), також, цілком природно вимагати, щоб відстань між двома матрицями коваріації було таким же, як відстань між відповідними кореляційними матрицями: тому я пропоную . (AB)2(Adet(A)1/pBdet(B)1/p)2
user603

2
По-перше, KL - це не реальна відстань, і це добре відомий факт. По-друге, якщо матриці вимірюються в різних одиницях, вони не можуть бути рівними.
Стаск

Чи відстань KL схожа на коефіцієнт вірогідності, чи вони пов'язані?
хешмук

7

Позначимо і ваші матриці обох розмірів .Σ1Σ2p

  1. Номер конденсу: де ( ) найбільше (найменше) власне значення , де визначається як: log(λ1)log(λp)λ1λpΣΣΣ:=Σ11/2Σ2Σ11/2

Правка: я відредагував другу з двох пропозицій. Я думаю, що я неправильно зрозумів питання. Пропозиція на основі номерів умов використовується в надійній статистиці для оцінки якості придатності. Старе джерело, яке я міг би знайти для нього, це:

Yohai, VJ та Maronna, RA (1990). Максимальний ухил міцних коваріацій. Комунікації в статистиці - теорія та методи, 19, 3925–2933.

Я спочатку включив міру коефіцієнта Дет:

  1. Коефіцієнт : де .log(det(Σ)/det(Σ2)det(Σ1))Σ=(Σ1+Σ2)/2

яка була б відстань Бхаттачарія між двома розподілами Гаусса, що мають той самий вектор розташування. Я, мабуть, спочатку прочитав питання, що стосується обстановки, коли дві коваріації надходять із зразків з популяцій, які вважаються рівними.


7

Захід, введений Herdin (2005) Кореляційна матриця відстані, значущим заходом для оцінки нестаціонарних каналів MIMO, є де нормою є норма Фробеніуса.

d=1tr(R1R2)R1R2,


+1. Дуже дякую за цю відповідь, мені це дуже допомогло.
амеба каже, що поверніть Моніку

1
Це одна мінус схожість косинуса, правда?
Firebug

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.