Дисперсія - це другий момент мінус квадрат першого моменту, тому досить обчислити моменти сумішей.
В цілому, з урахуванням розподілу з PDF - і постійна (невипадковий) вага р я , Ф суміші становитьfipi
f(x)=∑ipifi(x),
з якого випливає відразу на будь-який момент щоk
μ(k)=Ef[xk]=∑ipiEfi[xk]=∑ipiμ(k)i.
Я написав для до т ч моменту е і ц ( K ) I для до т ч моменту е I .μ(k)kthfμ(k)ikthfi
За допомогою цих формул може бути записана дисперсія
Var(f)=μ(2)−(μ(1))2=∑ipiμ(2)i−(∑ipiμ(1)i)2.
Equivalently, if the variances of the fi are given as σ2i, then μ(2)i=σ2i+(μ(1)i)2, enabling the variance of the mixture f to be written in terms of the variances and means of its components as
Var(f)=∑ipi(σ2i+(μ(1)i)2)−(∑ipiμ(1)i)2=∑ipiσ2i+∑ipi(μ(1)i)2−(∑ipiμ(1)i)2.
In words, this is the (weighted) average variance plus the average squared mean minus the square of the average mean. Because squaring is a convex function, Jensen's Inequality asserts that the average squared mean can be no less than the square of the average mean. This allows us to understand the formula as stating the variance of the mixture is the mixture of the variances plus a non-negative term accounting for the (weighted) dispersion of the means.
In your case the variance is
pAσ2A+pBσ2B+[pAμ2A+pBμ2B−(pAμA+pBμB)2].
We can interpret this is a weighted mixture of the two variances, pAσ2A+pBσ2B, plus a (necessarily positive) correction term to account for the shifts from the individual means relative to the overall mixture mean.
The utility of this variance in interpreting data, such as given in the question, is doubtful, because the mixture distribution will not be Normal (and may depart substantially from it, to the extent of exhibiting bimodality).