Мережі автоматичного кодування здаються набагато складнішими, ніж звичайні MLP-мережі класифікатора. Після декількох спроб використання Lasagne все, що я отримую на реконструйованому виході, - це щось, що в кращому випадку нагадує розмите усереднення всіх зображень бази даних MNIST, не залежно від того, що насправді є вхідною цифрою.
Я вибрав структуру мереж наступними каскадними шарами:
- вхідний шар (28x28)
- 2D згортковий шар, розмір фільтра 7x7
- Максимальний шар пулу, розмір 3х3, крок 2х2
- Щільний (повністю з'єднаний) згладжуючий шар, 10 одиниць (це вузьке місце)
- Щільний (повністю пов'язаний) шар, 121 од
- Переформатування шару до 11х11
- 2D згортковий шар, розмір фільтра 3х3
- 2D коефіцієнт підвищення масштабу 2
- 2D згортковий шар, розмір фільтра 3х3
- 2D коефіцієнт підвищення масштабу 2
- 2D згортковий шар, розмір фільтра 5x5
- Максимальне об'єднання можливостей (від 31x28x28 до 28x28)
Усі 2D звивисті шари мають зміщення зміщення, сигмоїдну активацію та 31 фільтр.
Всі повністю пов'язані шари мають сигмоподібну активацію.
Використовувана функція втрат - це помилка квадрата , функцією оновлення є adagrad
. Довжина шматка для навчання - 100 зразків, помножених на 1000 епох.
Далі наведено ілюстрацію проблеми: верхній рядок - кілька зразків, встановлених як входи мережі, нижній ряд - це реконструкція:
Для повноти наступний код, який я використав:
import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():
def load_mnist_images(filename):
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
# The inputs are vectors now, we reshape them to monochrome 2D images,
# following the shape convention: (examples, channels, rows, columns)
data = data.reshape(-1, 1, 28, 28)
# The inputs come as bytes, we convert them to float32 in range [0,1].
# (Actually to range [0, 255/256], for compatibility to the version
# provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
return data / np.float32(256)
def load_mnist_labels(filename):
# Read the labels in Yann LeCun's binary format.
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=8)
# The labels are vectors of integers now, that's exactly what we want.
return data
X_train = load_mnist_images('train-images-idx3-ubyte.gz')
y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
return X_train, y_train, X_test, y_test
def plot_filters(conv_layer):
W = conv_layer.get_params()[0]
W_fn = theano.function([],W)
params = W_fn()
ks = np.squeeze(params)
kstack = np.vstack(ks)
plt.imshow(kstack,interpolation='none')
plt.show()
def main():
#theano.config.exception_verbosity="high"
#theano.config.optimizer='None'
X_train, y_train, X_test, y_test = load_mnist()
ohe = OneHotEncoder()
y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
chunk_len = 100
visamount = 10
num_epochs = 1000
num_filters=31
dropout_p=.0
print "X_train.shape",X_train.shape,"y_train.shape",y_train.shape
input_var = T.tensor4('X')
output_var = T.tensor4('X')
conv_nonlinearity = lasagne.nonlinearities.sigmoid
net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
net = lasagne.layers.DropoutLayer(net,p=dropout_p)
#conv2_layer = lasagne.layers.Conv2DLayer(dropout_layer,num_filters,(3,3),nonlinearity=conv_nonlinearity)
#pool2_layer = lasagne.layers.MaxPool2DLayer(conv2_layer,(3,3),stride=(2,2))
net = lasagne.layers.DenseLayer(net,10,nonlinearity=lasagne.nonlinearities.sigmoid)
#augment_layer1 = lasagne.layers.DenseLayer(reduction_layer,33,nonlinearity=lasagne.nonlinearities.sigmoid)
net = lasagne.layers.DenseLayer(net,121,nonlinearity=lasagne.nonlinearities.sigmoid)
net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,11,11))
net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.Upscale2DLayer(net,2)
net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
#pool_after0 = lasagne.layers.MaxPool2DLayer(conv_after1,(3,3),stride=(2,2))
net = lasagne.layers.Upscale2DLayer(net,2)
net = lasagne.layers.DropoutLayer(net,p=dropout_p)
#conv_after2 = lasagne.layers.Conv2DLayer(upscale_layer1,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
#pool_after1 = lasagne.layers.MaxPool2DLayer(conv_after2,(3,3),stride=(1,1))
#upscale_layer2 = lasagne.layers.Upscale2DLayer(pool_after1,4)
net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
print "output_shape:",lasagne.layers.get_output_shape(net)
params = lasagne.layers.get_all_params(net, trainable=True)
prediction = lasagne.layers.get_output(net)
loss = lasagne.objectives.squared_error(prediction, output_var)
#loss = lasagne.objectives.binary_crossentropy(prediction, output_var)
aggregated_loss = lasagne.objectives.aggregate(loss)
updates = lasagne.updates.adagrad(aggregated_loss,params)
train_fn = theano.function([input_var, output_var], loss, updates=updates)
test_prediction = lasagne.layers.get_output(net, deterministic=True)
predict_fn = theano.function([input_var], test_prediction)
print "starting training..."
for epoch in range(num_epochs):
selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
X_train_sub = X_train[selected,:]
_loss = train_fn(X_train_sub, X_train_sub)
print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
"""
chunk = X_train[0:chunk_len,:,:,:]
result = predict_fn(chunk)
vis1 = np.hstack([chunk[j,0,:,:] for j in range(visamount)])
vis2 = np.hstack([result[j,0,:,:] for j in range(visamount)])
plt.imshow(np.vstack([vis1,vis2]))
plt.show()
"""
print "done."
chunk = X_train[0:chunk_len,:,:,:]
result = predict_fn(chunk)
print "chunk.shape",chunk.shape
print "result.shape",result.shape
plot_filters(conv1)
for i in range(chunk_len/visamount):
vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
plt.imshow(np.vstack([vis1,vis2]))
plt.show()
import ipdb; ipdb.set_trace()
if __name__ == "__main__":
main()
Будь-які ідеї, як покращити цю мережу, щоб отримати добре функціонуючий автокодер?
Проблема вирішена!
З реалізацією, яка зовсім інша, використовуючи випромінювальний випрямляч замість сигмоподібної функції в згорткових шарах, лише 2 (!!) вузли в шарі вузького місця і згортки з ядрами 1x1 на самому кінці.
Ось результат певної реконструкції:
Код:
import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import theano.tensor.nnet
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():
def load_mnist_images(filename):
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
# The inputs are vectors now, we reshape them to monochrome 2D images,
# following the shape convention: (examples, channels, rows, columns)
data = data.reshape(-1, 1, 28, 28)
# The inputs come as bytes, we convert them to float32 in range [0,1].
# (Actually to range [0, 255/256], for compatibility to the version
# provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
return data / np.float32(256)
def load_mnist_labels(filename):
# Read the labels in Yann LeCun's binary format.
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=8)
# The labels are vectors of integers now, that's exactly what we want.
return data
X_train = load_mnist_images('train-images-idx3-ubyte.gz')
y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
return X_train, y_train, X_test, y_test
def main():
X_train, y_train, X_test, y_test = load_mnist()
ohe = OneHotEncoder()
y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
chunk_len = 100
num_epochs = 10000
num_filters=7
input_var = T.tensor4('X')
output_var = T.tensor4('X')
#conv_nonlinearity = lasagne.nonlinearities.sigmoid
#conv_nonlinearity = lasagne.nonlinearities.rectify
conv_nonlinearity = lasagne.nonlinearities.LeakyRectify(.1)
softplus = theano.tensor.nnet.softplus
#conv_nonlinearity = theano.tensor.nnet.softplus
net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
net = lasagne.layers.DenseLayer(net,2,nonlinearity=lasagne.nonlinearities.sigmoid)
net = lasagne.layers.DenseLayer(net,49,nonlinearity=lasagne.nonlinearities.sigmoid)
net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,7,7))
net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
net = lasagne.layers.Upscale2DLayer(net,4)
net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
net = lasagne.layers.Upscale2DLayer(net,4)
net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.Conv2DLayer(net,num_filters,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
net = lasagne.layers.Conv2DLayer(net,1,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
print "output shape:",net.output_shape
params = lasagne.layers.get_all_params(net, trainable=True)
prediction = lasagne.layers.get_output(net)
loss = lasagne.objectives.squared_error(prediction, output_var)
#loss = lasagne.objectives.binary_hinge_loss(prediction, output_var)
aggregated_loss = lasagne.objectives.aggregate(loss)
#updates = lasagne.updates.adagrad(aggregated_loss,params)
updates = lasagne.updates.nesterov_momentum(aggregated_loss,params,0.5)#.005
train_fn = theano.function([input_var, output_var], loss, updates=updates)
test_prediction = lasagne.layers.get_output(net, deterministic=True)
predict_fn = theano.function([input_var], test_prediction)
print "starting training..."
for epoch in range(num_epochs):
selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
X_train_sub = X_train[selected,:]
_loss = train_fn(X_train_sub, X_train_sub)
print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
print "done."
chunk = X_train[0:chunk_len,:,:,:]
result = predict_fn(chunk)
print "chunk.shape",chunk.shape
print "result.shape",result.shape
visamount = 10
for i in range(10):
vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
plt.imshow(np.vstack([vis1,vis2]))
plt.show()
import ipdb; ipdb.set_trace()
if __name__ == "__main__":
main()