lme4 або інший код пакета з відкритим кодом R, еквівалентний asreml-R


13

Я хочу підходити до змішаної моделі, використовуючи lme4, nlme, байзійський регресійний пакет або будь-який доступний.

Змішана модель у конвенціях про кодування Asreml-R

Перш ніж розібратися у конкретних характеристиках, ми можемо захотіти деталізувати конвенції asreml-R для тих, хто не знайомий з кодами ASREML.

y = Xτ + Zu + e ........................(1) ; 

звичайна змішана модель з, y позначає вектор n × 1 спостережень, де τ - р × 1 векторних ефектів, X - матриця n × p проектування повного рангового стовпця, яка пов'язує спостереження з відповідною комбінацією вивірених ефектів , u - вектор q × 1 випадкових ефектів, Z - матриця проектування n × q, яка пов'язує спостереження з відповідною комбінацією випадкових ефектів, а e - вектор n × 1 залишкових помилок. Модель (1) називається лінійна змішана модель або лінійна змішана модель ефектів. Передбачається

введіть тут опис зображення

де матриці G і R - функції параметрів γ і φ відповідно.

Параметр θ - параметр дисперсії, який ми будемо називати параметром масштабу.

У змішаних моделях ефектів з більш ніж однією залишковою дисперсією, що виникає, наприклад, при аналізі даних з більш ніж одним розділом або змінною, параметр θ присвоюється одному. У змішаних моделях ефектів з однією залишковою дисперсією тоді θ дорівнює залишкової дисперсії (σ2). У цьому випадку R повинна бути кореляційною матрицею. Більш детальна інформація про моделі наведена в посібнику Asreml (посилання) .

Варіаційні структури для помилок: R структура та структури дисперсій для випадкових ефектів: G структури можуть бути задані.

введіть тут опис зображеннявведіть тут опис зображення

дисперсійне моделювання в асремі () важливо зрозуміти формування дисперсійних структур за допомогою прямих добутків. Звичайне припущення про найменші квадрати (і за замовчуванням в asreml ()) - це те, що вони розподілені незалежно та однаково (IID). Однак, якщо дані були з польового експерименту, викладеного у прямокутному масиві r рядків c стовпцями, скажімо, ми могли б упорядкувати залишки e як матрицю і потенційно вважати, що вони автокорельовані у рядках та стовпцях. Записуючи залишки як вектор у польовому порядку, тобто шляхом сортування рядків залишків у стовпцях (графіки в межах блоків), тоді може бути дисперсія залишків

введіть тут опис зображення введіть тут опис зображенняє кореляційними матрицями для рядкової моделі (порядок r, параметр автокореляції ½r) та моделі стовпців (порядок c, параметр автокореляції ½c) відповідно. Більш конкретно, іноді передбачається двовимірна відокремлена авторегресивна просторова структура (AR1 x AR1) для поширених помилок в польовому дослідному аналізі.

Приклад даних:

nin89 походить з бібліотеки asreml-R, де різні типи вирощувались у реплікаціях / блоках у прямокутному полі. Для управління додатковою мінливістю у напрямку рядків чи стовпців кожен графік посилається на змінні рядків та стовпців (конструкція стовпців рядків). Таким чином, цей рядок стовпця оформляють з блокуванням. Вихід вимірюється змінним.

Приклад моделей

Мені потрібно щось еквівалентне кодам asreml-R:

Синтаксис простої моделі виглядатиме так:

 rcb.asr <- asreml(yield  Variety, random =  Replicate, data = nin89)  
 .....model 0

Лінійна модель задається у фіксованих (обов'язкових), випадкових (необов'язкових) та rcov (компонентах помилках) аргументах об'єктів. За замовчуванням це простий термін помилки і його не потрібно формально вказувати на термін помилки, як у моделі 0 .

тут різноманітність є фіксованим ефектом і випадковим є репліками (блоками). Крім випадкових і фіксованих термінів ми можемо вказати термін помилки. За замовчуванням у цій моделі 0. Залишковий або помилковий компонент моделі задається в об'єкті формули через аргумент rcov, див. Наступні моделі 1: 4.

Наступна модель1 є більш складною, в якій задані і G (випадкова), і R (помилка) структури.

Модель 1:

data(nin89)


 # Model 1: RCB analysis with G and R structure
     rcb.asr <- asreml(yield ~ Variety, random = ~ idv(Replicate), 
      rcov = ~ idv(units), data = nin89)

Ця модель еквівалентна вищевказаній моделі 0 та вводить використання дисперсійної моделі G та R. Тут параметр random і rcov задає випадкові та rcov формули, щоб чітко вказати структури G і R. де idv () - функція спеціальної моделі в asreml (), яка ідентифікує модель дисперсії. Вираз idv (одиниці) явно встановлює матрицю дисперсії для e до масштабованої ідентичності.

# Модель 2: двовимірна просторова модель з кореляцією в одному напрямку

  sp.asr <- asreml(yield ~ Variety, rcov = ~ Column:ar1(Row), data = nin89)

експериментальні одиниці nin89 індексуються стовпцем та рядком. Тож ми очікуємо випадкові зміни в двох напрямках - напрямку рядка та стовпця в цьому випадку. де ar1 () - спеціальна функція, що визначає модель авторегресивної дисперсії першого порядку для рядка. Цей виклик визначає двовимірну просторову структуру для помилок, але з просторовою кореляцією лише у напрямку рядка. Модель дисперсії для стовпця має тотожність (id ()), але її формально не потрібно вказувати, оскільки це за замовчуванням.

# модель 3: двовимірна просторова модель, структура помилок в обох напрямках

 sp.asr <- asreml(yield ~ Variety, rcov = ~ ar1(Column):ar1(Row),  
 data = nin89)
sp.asr <- asreml(yield ~ Variety, random = ~ units, 
 rcov = ~ ar1(Column):ar1(Row), data = nin89)

подібно до вищезгаданої моделі 2, проте кореляція має два напрями - авторегресивний.

Я не впевнений, наскільки ці моделі можливі з пакетами з відкритим кодом R. Навіть якщо рішення будь-якої з цих моделей буде корисною. Навіть якщо виграш +50 може стимулювати розробку такого пакету, буде дуже корисно!

Див. Розділ MAYSaseen надав результати для кожної моделі та дані (як відповідь) для порівняння.

Редагування: Наступне пропозиція, яку я отримав на форумі змішаних моделей: "Ви можете подивитися на регресивні та просторові пакети коваріації Девіда Кліффорда. Перша дозволяє встановлювати (гауссові) змішані моделі, де ви можете дуже гнучко визначати структуру коваріаційної матриці. (наприклад, я використовував це для даних про родовід). Пакет просторової короваріації використовує регрес для надання більш досконалих моделей, ніж AR1xAR1, але може бути застосовно. Можливо, вам доведеться листуватися з автором щодо застосування його до вашої точної проблеми. "


Я майже впевнений, що моделі 2-4 неможливі lme4. Чи можете ви (а) сказати нам, для чого вам потрібно це зробити, lme4а не asreml-R(б) розглянути повідомлення про те, r-sig-mixed-modelsде є більш відповідні знання?
Бен Болкер

Основна ідея - asreml-R вимагати ліцензії (принаймні для користувачів з розвиненою країною), якщо це можливо в lme4 або інших змішаних модельних пакетах, що було б чудово ...
Іван

Я думаю, що це буде непросто. Я думаю, що найкращим може бути визначення нового corStructв nlme(для анізотропних кореляцій) ... Це допоможе, якщо ви можете коротко викласти (словами чи рівняннями) статистичні моделі, відповідні цим твердженням ASREML, оскільки ми не всі знайомі з Синтаксис ASREML ...
Бен Болкер

1
Далі йде коментар у змішаній групі моделей: Ви можете подивитися на регреси та просторові пакети коваріації Девіда Кліффорда. Перша дозволяє встановлювати (гауссові) змішані моделі, де ви можете дуже гнучко вказати структуру коваріаційної матриці (наприклад, я використовував її для даних родоводу). Пакет просторового кодування використовує регрес для надання більш досконалих моделей, ніж AR1xAR1, але може бути застосовно. Можливо, вам доведеться листуватися з автором щодо застосування його до вашої точної проблеми.
Джон

1
якщо я отримаю шанс, я спробую вирішити якнайбільше цього, як тільки можу, але, чесно кажучи, я, можливо, не дістанусь до цього, у мене на тарілці багато. Дивлячись на пакети, які запропонував Девід Кліффорд, звучить як чудова ідея - можливо, ви можете вирішити власну проблему таким чином ... Я майже впевнений, що з моделлю 1 можна обійтися MCMCglmm, і я впевнений, що (крім spatialCovarianceзгадали, що я НЕ знаком с), єдиним способом , щоб зробити це в R є визначенням нових corStructс - що можливо, але не тривіальні.
Бен Болкер

Відповіді:


4

Ви можете відповідати цій моделі за допомогою AD Model Builder. AD Model Builder - це безкоштовне програмне забезпечення для побудови загальних нелінійних моделей, включаючи загальні нелінійні моделі випадкових ефектів. Так, наприклад, ви можете помістити негативну біноміальну просторову модель, де і середня, і над дисперсія мали структуру ar (1) x ar (1). Я побудував код для цього прикладу і пристосував його до даних. Якщо хтось зацікавлений, можливо, краще обговорити це у списку на веб-сайті http://admb-project.org

Примітка. Існує версія RM ADMB, але функції, доступні в пакеті R, є підмножиною автономного програмного забезпечення ADMB.

У цьому прикладі простіше створити файл ASCII з даними, прочитати його в програмі ADMB, запустити програму, а потім прочитати оцінки параметрів тощо назад у R для того, що ви хочете зробити.

Ви повинні розуміти, що ADMB - це не колекція пакунків, а швидше мова для написання програмного забезпечення для нелінійних параметрів. Як я вже говорив, краще обговорити це у списку ADMB, де всі знають про програмне забезпечення. Після того як це буде зроблено і ви зрозумієте модель, ви можете опублікувати результати тут. Однак тут є посилання на коди ML та REML, які я зібрав для даних про пшеницю.

http://lists.admb-project.org/pipermail/users/attachments/20111124/448923c8/attachment.zip


Чи є міжфазна R для з'єднання з AD Model Builder?
Іван

1

Модель 0

ASReml-R

rcb0.asr <- asreml(yield~Variety, random=~Rep, data=nin89, na.method.X="include")
summary(rcb0.asr)
$call
asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89, 
    na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 7.041475

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"

summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

> anova(rcb0.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   12001.6        242.054    <2e-16 ***
Variety       55    2387.5         48.152    0.7317    
residual (MS)         49.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb0.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb0.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432659
Rep_3 -0.8712739
Rep_4 -3.8515918

lme4

> rcb0.lmer <- lmer(yield~Variety+(1|Rep), data=nin89)
> print(rcb0.lmer, corr=FALSE)
Linear mixed model fit by REML 
Formula: yield ~ Variety + (1 | Rep) 
   Data: nin89 
  AIC  BIC logLik deviance REMLdev
 1334 1532 -608.9     1456    1218
Random effects:
 Groups   Name        Variance Std.Dev.
 Rep      (Intercept)  9.8829  3.1437  
 Residual             49.5824  7.0415  
Number of obs: 224, groups: Rep, 4

Fixed effects:
                  Estimate Std. Error t value
(Intercept)        29.4375     3.8556   7.635
VarietyBRULE       -3.3625     4.9791  -0.675
VarietyBUCKSKIN    -3.8750     4.9791  -0.778
VarietyCENTURA     -7.7875     4.9791  -1.564
VarietyCENTURK78    0.8625     4.9791   0.173
VarietyCHEYENNE    -1.3750     4.9791  -0.276
VarietyCODY        -8.2250     4.9791  -1.652
VarietyCOLT        -2.4375     4.9791  -0.490
VarietyGAGE        -4.9250     4.9791  -0.989
VarietyHOMESTEAD   -1.8000     4.9791  -0.362
VarietyKS831374    -5.3125     4.9791  -1.067
VarietyLANCER      -0.8750     4.9791  -0.176
VarietyLANCOTA     -2.8875     4.9791  -0.580
VarietyNE83404     -2.0500     4.9791  -0.412
VarietyNE83406     -5.1625     4.9791  -1.037
VarietyNE83407     -6.7500     4.9791  -1.356
VarietyNE83432     -9.7125     4.9791  -1.951
VarietyNE83498      0.6875     4.9791   0.138
VarietyNE83T12     -7.8750     4.9791  -1.582
VarietyNE84557     -8.9125     4.9791  -1.790
VarietyNE85556     -3.0500     4.9791  -0.613
VarietyNE85623     -7.7125     4.9791  -1.549
VarietyNE86482     -5.1500     4.9791  -1.034
VarietyNE86501      1.5000     4.9791   0.301
VarietyNE86503      3.2125     4.9791   0.645
VarietyNE86507     -5.6500     4.9791  -1.135
VarietyNE86509     -2.5875     4.9791  -0.520
VarietyNE86527     -7.4250     4.9791  -1.491
VarietyNE86582     -4.9000     4.9791  -0.984
VarietyNE86606      0.3250     4.9791   0.065
VarietyNE86607     -0.1125     4.9791  -0.023
VarietyNE86T666    -7.9000     4.9791  -1.587
VarietyNE87403     -4.3125     4.9791  -0.866
VarietyNE87408     -3.1375     4.9791  -0.630
VarietyNE87409     -8.0625     4.9791  -1.619
VarietyNE87446     -1.7625     4.9791  -0.354
VarietyNE87451     -4.8250     4.9791  -0.969
VarietyNE87457     -5.5250     4.9791  -1.110
VarietyNE87463     -3.5250     4.9791  -0.708
VarietyNE87499     -9.0250     4.9791  -1.813
VarietyNE87512     -6.1875     4.9791  -1.243
VarietyNE87513     -2.6250     4.9791  -0.527
VarietyNE87522     -4.4375     4.9791  -0.891
VarietyNE87612     -7.6375     4.9791  -1.534
VarietyNE87613     -0.0375     4.9791  -0.008
VarietyNE87615     -3.7500     4.9791  -0.753
VarietyNE87619      1.8250     4.9791   0.367
VarietyNE87627     -6.2125     4.9791  -1.248
VarietyNORKAN      -5.0250     4.9791  -1.009
VarietyREDLAND      1.0625     4.9791   0.213
VarietyROUGHRIDER  -8.2500     4.9791  -1.657
VarietySCOUT66     -1.9125     4.9791  -0.384
VarietySIOUXLAND    0.6750     4.9791   0.136
VarietyTAM107      -1.0375     4.9791  -0.208
VarietyTAM200      -8.2000     4.9791  -1.647
VarietyVONA        -5.8375     4.9791  -1.172
> anova(rcb0.lmer)
Analysis of Variance Table
        Df Sum Sq Mean Sq F value
Variety 55 2387.5  43.409  0.8755
> fixef(rcb0.lmer)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lmer)
$Rep
  (Intercept)
1   1.8798700
2   2.8436747
3  -0.8713991
4  -3.8521455

nlme

> rcb0.lme <- lme(yield~Variety, random=~1|Rep, data=na.omit(nin89))
> print(rcb0.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~1 | Rep
        (Intercept) Residual
StdDev:     3.14371 7.041475

Number of Observations: 224
Number of Groups: 4 
> anova(rcb0.lme)
            numDF denDF   F-value p-value
(Intercept)     1   165 242.05402  <.0001
Variety        55   165   0.87549  0.7119
> fixef(rcb0.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lme)
  (Intercept)
1   1.8795997
2   2.8432659
3  -0.8712739
4  -3.8515918

1

Модель 1

ASReml-R

> rcb.asr <- asreml(yield~Variety, random=~idv(Rep), rcov=~idv(units), data=nin89, na.method.X="include")
> summary(rcb.asr)
$call
asreml(fixed = yield ~ Variety, random = ~idv(Rep), rcov = ~idv(units), 
    data = nin89, na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 1

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var  9.882911  9.882911  8.792823 1.123975   Positive
R!variance   1.000000  1.000000        NA       NA      Fixed
R!units.var 49.582368 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"
> summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive
> anova(rcb.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   242.054        242.054    <2e-16 ***
Variety       55    48.152         48.152    0.7317    
residual (MS)        1.000                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432658
Rep_3 -0.8712738
Rep_4 -3.8515916

nlme

Дивіться хитрість

> nin89$Int <- 1
> rcb.lme <- lme(yield~Variety, random=list(Int=pdIdent(~Rep-1)), data=na.omit(nin89))
> print(rcb.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~Rep - 1 | Int
 Structure: Multiple of an Identity
           Rep1    Rep2    Rep3    Rep4 Residual
StdDev: 3.14371 3.14371 3.14371 3.14371 7.041475

Number of Observations: 224
Number of Groups: 1 
> anova(rcb.lme)
            numDF denDF   F-value p-value
(Intercept)     1   168 242.05402  <.0001
Variety        55   168   0.87549  0.7121
> fixef(rcb.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb.lme)
    Rep1     Rep2       Rep3      Rep4
1 1.8796 2.843266 -0.8712739 -3.851592

1

Модель 2

ASReml-R

sp1.asr <- asreml(yield~Variety, rcov=~Column:ar1(Row), data=nin89, na.method.X="include")

> summary(sp1.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~Column:ar1(Row), data = nin89, 
    na.method.X = "include")

$loglik
[1] -408.1412

$nedf
[1] 168

$sigma
[1] 7.975127

$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp1.asr)$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained
> anova(sp1.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   24604.3         386.84 < 2.2e-16 ***
Variety       55    7974.4         125.38 2.048e-07 ***
residual (MS)         63.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp1.asr)$fixed
                        effect
Variety_ARAPAHOE     0.0000000
Variety_BRULE       -2.4048816
Variety_BUCKSKIN     7.8064972
Variety_CENTURA     -1.6997427
Variety_CENTURK78   -1.3829446
Variety_CHEYENNE    -1.1113084
Variety_CODY        -6.7461911
Variety_COLT        -1.7963394
Variety_GAGE        -3.4539524
Variety_HOMESTEAD   -5.5877510
Variety_KS831374    -0.8589476
Variety_LANCER      -2.8418476
Variety_LANCOTA     -5.9394801
Variety_NE83404     -3.4112613
Variety_NE83406     -1.9057358
Variety_NE83407     -3.2563922
Variety_NE83432     -5.4594311
Variety_NE83498      0.6446010
Variety_NE83T12     -4.0071361
Variety_NE84557     -4.2005181
Variety_NE85556      1.4836395
Variety_NE85623     -2.7617129
Variety_NE86482     -1.4309381
Variety_NE86501     -2.2287462
Variety_NE86503     -0.4557866
Variety_NE86507     -0.6983418
Variety_NE86509     -3.9215624
Variety_NE86527      0.5294386
Variety_NE86582     -5.4653632
Variety_NE86606     -0.7291575
Variety_NE86607     -0.1265536
Variety_NE86T666   -12.1437291
Variety_NE87403     -7.4623631
Variety_NE87408     -3.3586380
Variety_NE87409     -1.0360336
Variety_NE87446     -4.9030958
Variety_NE87451     -3.2836149
Variety_NE87457     -3.5244583
Variety_NE87463     -3.8427658
Variety_NE87499     -4.6298393
Variety_NE87512     -5.3760809
Variety_NE87513     -5.5656241
Variety_NE87522     -7.6500899
Variety_NE87612     -2.7225851
Variety_NE87613     -0.8793319
Variety_NE87615     -4.0089291
Variety_NE87619      0.7975626
Variety_NE87627    -10.1315147
Variety_NORKAN      -7.1804945
Variety_REDLAND      0.6753066
Variety_ROUGHRIDER  -0.9637487
Variety_SCOUT66      0.7088916
Variety_SIOUXLAND   -1.1998807
Variety_TAM107      -3.7160351
Variety_TAM200      -9.0340942
Variety_VONA        -2.7970689
(Intercept)         28.3487457

nlme

Працюючи над тим, поки не з’ясували. Може бути щось подібне. До сих пір не міг зрозуміти, як це зробити rcov=~Column:ar1(Row)зnlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

1

Модель 3

ASReml-R

sp2.asr <- asreml(yield~Variety, rcov=~ar1(Column):ar1(Row), data=nin89, na.method.X="include")

> summary(sp2.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~ar1(Column):ar1(Row), 
    data = nin89, na.method.X = "include")

$loglik
[1] -399.3238

$nedf
[1] 168

$sigma
[1] 6.978728

$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp2.asr)$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained
> anova(sp2.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   16165.6         331.93 < 2.2e-16 ***
Variety       55    5961.7         122.41 4.866e-07 ***
residual (MS)         48.7                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp2.asr)$fixed
                         effect
Variety_ARAPAHOE     0.00000000
Variety_BRULE        0.03029321
Variety_BUCKSKIN     8.89207227
Variety_CENTURA     -0.68979639
Variety_CENTURK78    0.16461970
Variety_CHEYENNE     0.50267820
Variety_CODY        -3.26960093
Variety_COLT        -0.51826695
Variety_GAGE        -0.95824999
Variety_HOMESTEAD   -4.57873078
Variety_KS831374     0.27843476
Variety_LANCER      -2.95379384
Variety_LANCOTA     -4.67006598
Variety_NE83404     -1.32290865
Variety_NE83406     -1.66351994
Variety_NE83407     -2.64471830
Variety_NE83432     -4.42828427
Variety_NE83498      1.80418738
Variety_NE83T12     -2.11789109
Variety_NE84557     -2.34685080
Variety_NE85556      2.78001120
Variety_NE85623     -1.42164134
Variety_NE86482     -1.63334029
Variety_NE86501     -2.94339063
Variety_NE86503     -0.95747374
Variety_NE86507      0.46223383
Variety_NE86509     -3.27166458
Variety_NE86527      1.86588098
Variety_NE86582     -3.87940069
Variety_NE86606      0.22753741
Variety_NE86607      0.60702026
Variety_NE86T666   -10.27005825
Variety_NE87403     -7.43945904
Variety_NE87408     -3.10433009
Variety_NE87409      1.29746980
Variety_NE87446     -4.15943316
Variety_NE87451     -1.85324718
Variety_NE87457     -2.31156727
Variety_NE87463     -4.47086114
Variety_NE87499     -1.85909637
Variety_NE87512     -4.06473578
Variety_NE87513     -3.99604937
Variety_NE87522     -5.52109215
Variety_NE87612     -1.95543098
Variety_NE87613     -0.83160454
Variety_NE87615     -1.92104271
Variety_NE87619      2.98322047
Variety_NE87627     -7.33205188
Variety_NORKAN      -5.78418023
Variety_REDLAND      1.75249392
Variety_ROUGHRIDER  -0.97736288
Variety_SCOUT66      2.13126094
Variety_SIOUXLAND   -2.54195346
Variety_TAM107      -1.59083563
Variety_TAM200      -6.54229161
Variety_VONA        -1.52728371
(Intercept)         27.04285175

nlme

Працюючи над тим, поки не з’ясували. Може бути щось подібне. До сих пір не міг зрозуміти, як це зробити rcov=~ar1(Column):ar1(Row)зnlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

Я не міг зрозуміти, як підібрати моделі 2 та 3 nlme. Я працюю над цим і оновлю відповідь, коли закінчу. Але я включив результати ASReml-Rдля моделей 2 та 3 для цілей порівняння. Кевін має хороший досвід аналізу таких моделей, а Бен Болкер має чудовий авторитет у змішаних моделях. Сподіваюся, вони можуть допомогти нам у моделях 2 та 3.

Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.