Інтерпретація сезонності за допомогою ACF та PACF


10

У мене є набір даних, де емпірична інтуїція говорить, що я повинен очікувати щотижневої сезонності (тобто поведінка в суботу та неділю відрізняється від решти тижня). Якщо ця передумова буде правдою, чи не повинен графік автокореляції давати мені сплески при кратних відставаннях 7?

Ось зразок даних:

data = TemporalData[{{{2012, 09, 28}, 19160768}, {{2012, 09, 19}, 
    19607936}, {{2012, 09, 08}, 7867456}, {{2012, 09, 15}, 
    11245024}, {{2012, 09, 04}, 0}, {{2012, 09, 21}, 
    24314496}, {{2012, 09, 12}, 11233632}, {{2012, 09, 03}, 
    9886496}, {{2012, 09, 09}, 9122272}, {{2012, 09, 24}, 
    23103456}, {{2012, 09, 20}, 25721472}, {{2012, 09, 11}, 
    12272160}, {{2012, 09, 25}, 21876960}, {{2012, 09, 05}, 
    7182528}, {{2012, 09, 16}, 11754752}, {{2012, 09, 23}, 
    23737248}, {{2012, 09, 26}, 20985984}, {{2012, 09, 10}, 
    12123584}, {{2012, 09, 06}, 9076736}, {{2012, 09, 17}, 
    20123328}, {{2012, 09, 18}, 20634720}, {{2012, 09, 22}, 
    23361024}, {{2012, 09, 14}, 11804928}, {{2012, 09, 07}, 
    9007200}, {{2012, 09, 02}, 9244192}, {{2012, 09, 13}, 
    11335328}, {{2012, 09, 27}, 20694720}, {{2012, 10, 26}, 
    12242112}, {{2012, 10, 15}, 10963776}, {{2012, 11, 09}, 
    9735424}, {{2012, 10, 08}, 10078240}, {{2012, 10, 31}, 
    10676736}, {{2012, 10, 20}, 11719840}, {{2012, 11, 05}, 
    10475168}, {{2012, 10, 01}, 9988416}, {{2012, 10, 24}, 
    11998688}, {{2012, 10, 12}, 10393120}, {{2012, 10, 23}, 
    11987936}, {{2012, 10, 19}, 11165536}, {{2012, 10, 04}, 
    9902720}, {{2012, 11, 16}, 10023648}, {{2012, 11, 21}, 
    10047936}, {{2012, 10, 10}, 10205568}, {{2012, 11, 08}, 
    9872832}, {{2012, 10, 21}, 12854112}, {{2012, 11, 04}, 
    10485856}, {{2012, 10, 07}, 9565248}, {{2012, 09, 30}, 
    9784864}, {{2012, 10, 29}, 12880064}, {{2012, 11, 10}, 
    8945824}, {{2012, 11, 15}, 9870880}, {{2012, 09, 29}, 
    9718080}, {{2012, 10, 18}, 10992896}, {{2012, 10, 06}, 
    9319584}, {{2012, 11, 03}, 9077024}, {{2012, 10, 03}, 
    10537408}, {{2012, 11, 22}, 9853216}, {{2012, 10, 11}, 
    10191936}, {{2012, 10, 22}, 12766816}, {{2012, 11, 07}, 
    9510624}, {{2012, 11, 14}, 9707264}, {{2012, 10, 28}, 
    12060736}, {{2012, 11, 19}, 10946880}, {{2012, 11, 11}, 
    9529568}, {{2012, 10, 09}, 9967680}, {{2012, 10, 17}, 
    12093344}, {{2012, 11, 20}, 10520800}, {{2012, 10, 05}, 
    9619136}, {{2012, 10, 25}, 11484288}, {{2012, 11, 17}, 
    9389312}, {{2012, 10, 30}, 12078944}, {{2012, 10, 14}, 
    9505984}, {{2012, 10, 02}, 9943648}, {{2012, 11, 24}, 
    9458144}, {{2012, 11, 02}, 10082944}, {{2012, 11, 01}, 
    11082912}, {{2012, 10, 13}, 9117632}, {{2012, 11, 23}, 
    10253280}, {{2012, 11, 12}, 10240672}, {{2012, 11, 06}, 
    9723456}, {{2012, 11, 13}, 9806880}, {{2012, 10, 16}, 
    12368896}, {{2012, 11, 18}, 9632800}, {{2012, 10, 27}, 10606656}}]

... і ACF:

введіть тут опис зображення

... і PACF:

введіть тут опис зображення


4
Можливо, ваша інтуїція неправильна? Мені особисто подобається переглядати боксерські дні по днях тижня. Як вони виглядають? Крім того, ви можете подивитися на сезонні сюжети, побудувавши свою змінну інтересу проти дня тижня протягом декількох тижнів, як це (але з днем ​​тижня замість місяця на горизонтальній осі): otexts.com/fppfigs/a10b.png
Stephan Коласа

1
Ви дивилися на це ?
чакраварти

Відповіді:


16

По-перше, ось ваша інтуїція проілюстрована у спрощеному часовому ряду, де вихідні легко помітні в ACF:

введіть тут опис зображення Однак цю очікувану схему ACF можна замаскувати, коли дані мають певну тенденцію: введіть тут опис зображення введіть тут опис зображення

Рішенням (якщо це проблема) є оцінка та контроль за тенденцією при визначенні сезонності.

Код R, який створив ці сюжети, наступний:

# fourteen repeating 'weeks' of five zeroes and two ones
weekendeffect <- rep(c(rep(0,5),1,1),times=14)

plot(weekendeffect,
    main="Weekly pattern of five zeroes & two ones",
    xlab="Time", ylab="Value")  
acf(weekendeffect, main="ACF")

# add steady trend 
dailydrift <- 0.05
drift <- seq(from=dailydrift, to=length(weekendeffect)*dailydrift, 
   by=dailydrift)
driftingtimeseries <- drift + weekendeffect 

plot(driftingtimeseries,
    main=c("Weekly pattern with daily drift of",dailydrift),
    xlab="Time", ylab="Value")  
acf(driftingtimeseries, main=c("ACF with daily drift of",dailydrift))


# add larger trend 
dailydrift <- 0.1
drift <- seq(from=dailydrift, to=length(weekendeffect)*dailydrift, 
   by=dailydrift)
driftingtimeseries <- drift + weekendeffect 

plot(driftingtimeseries,
    main=c("Weekly pattern with daily drift of",dailydrift),
    xlab="Time", ylab="value")  
acf(driftingtimeseries, main=c("ACF with daily drift of",dailydrift))

0

Чи використовували ви метод розрізнення, щоб зробити свої дані нерухомими? ваш сюжет ACF говорить про те, що, можливо, ви цього кроку не зробили. Коли у вас буде стаціонарна серія, то буде простіше інтерпретувати сюжети. Я додаю два університетські джерела, які можуть допомогти вам розрізняти та тлумачити.

Державний університет Пенсільванії

Університет герцога


будь ласка, додайте посилання на свої посилання, якщо вони помруть у майбутньому
Антуан
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.