У мене є дані опитувального експерименту, в якому респонденти були випадковим чином віднесені до однієї з чотирьох груп:
> summary(df$Group)
Control Treatment1 Treatment2 Treatment3
59 63 62 66
Хоча три групи лікування дещо відрізняються залежно від застосованого подразника, головне розмежування, яке мене хвилює, - це контрольна та лікувальна групи. Тому я визначив фіктивну змінну Control
:
> summary(df$Control)
TRUE FALSE
59 191
У ході опитування респондентів попросили (серед іншого) вибрати, яку з двох речей вони вважають за краще:
> summary(df$Prefer)
A B NA's
152 93 5
Потім, отримавши певний стимул, визначений їх групою лікування (і жоден, якщо вони були в контрольній групі), респондентам було запропоновано вибрати одне і те ж саме:
> summary(df$Choice)
A B
149 101
Хочу знати, чи перебування в одній із трьох груп лікування впливало на вибір, який зробили респонденти в цьому останньому запитанні. Моя гіпотеза полягає в тому, що респонденти, які отримали лікування, швидше вибирають, A
ніж B
.
З огляду на те, що я працюю з категоричними даними, я вирішив застосувати регресію logit (не соромтесь звучати, якщо ви вважаєте, що це неправильно). Оскільки респонденти були призначені випадковим чином, я маю враження, що мені не обов’язково потрібно контролювати інші змінні (наприклад, демографічні показники), тому я залишив їх поза цим питанням. Моєю першою моделлю було просто наступне:
> x0 <- glm(Product ~ Control + Prefer, data=df, family=binomial(link="logit"))
> summary(x0)
Call:
glm(formula = Choice ~ Control + Prefer, family = binomial(link = "logit"),
data = df)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.8366 -0.5850 -0.5850 0.7663 1.9235
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.4819 0.3829 3.871 0.000109 ***
ControlFALSE -0.4068 0.3760 -1.082 0.279224
PreferA -2.7538 0.3269 -8.424 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 328.95 on 244 degrees of freedom
Residual deviance: 239.69 on 242 degrees of freedom
(5 observations deleted due to missingness)
AIC: 245.69
Number of Fisher Scoring iterations: 4
Я маю враження, що перехоплення, що є статистично значущим, не є тим, що має інтерпретаційне значення. Можливо, я подумав, що я повинен включати термін взаємодії таким чином:
> x1 <- glm(Choice ~ Control + Prefer + Control:Prefer, data=df, family=binomial(link="logit"))
> summary(x1)
Call:
glm(formula = Product ~ Control + Prefer + Control:Prefer, family = binomial(link = "logit"),
data = df)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5211 -0.6424 -0.5003 0.8519 2.0688
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.135 1.021 3.070 0.00214 **
ControlFALSE -2.309 1.054 -2.190 0.02853 *
PreferA -5.150 1.152 -4.472 7.75e-06 ***
ControlFALSE:PreferA 2.850 1.204 2.367 0.01795 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 328.95 on 244 degrees of freedom
Residual deviance: 231.27 on 241 degrees of freedom
(5 observations deleted due to missingness)
AIC: 239.27
Number of Fisher Scoring iterations: 5
Зараз статус респондентів у групі лікування має очікуваний ефект. Це був дійсний набір кроків? Як можна інтерпретувати термін взаємодії ControlFALSE:PreferA
? Чи інші коефіцієнти все ще мають коефіцієнт журналу?