Припустимо, що випадкова величина має нижню і верхню межу [0,1]. Як обчислити дисперсію такої змінної?
Припустимо, що випадкова величина має нижню і верхню межу [0,1]. Як обчислити дисперсію такої змінної?
Відповіді:
Ви можете довести нерівність Поповічу наступним чином. Використовуйте позначення т = інф Х
Тепер розглянемо значення функції g
Let F
As a matter of notation, let μk=∫10xkdF(x)
We know F
Let us alter F
μ′k=μk−∫JxkdF(x).
As a matter of notation, let us write [g(x)]=∫Jg(x)dF(x)
μ′2=μ2−[x2],μ′=μ−[x].
Calculate
σ′2=μ′2−μ′2=μ2−[x2]−(μ−[x])2=σ2+((μ[x]−[x2])+(μ[x]−[x]2)).
The second term on the right, (μ[x]−[x]2)
μ[x]−[x2]=μ(1−[1])+([μ][x]−[x2]).
The first term on the right is strictly positive because (a) μ>0
We have just shown that under our assumptions, changing F
Now when F
If the random variable is restricted to [a,b]
Let us first consider the case a=0,b=1
To generalize to intervals [a,b]
At @user603's request....
A useful upper bound on the variance σ2
Another point to keep in mind is that a bounded random variable has finite variance, whereas for an unbounded random variable, the variance might not be finite, and in some cases might not even be definable. For example, the mean cannot be defined for Cauchy random variables, and so one cannot define the variance (as the expectation of the squared deviation from the mean).
are you sure that this is true in general - for continuous as well as discrete distributions? Can you provide a link to the other pages? For a general distibution on [a,b] it is trivial to show that Var(X)=E[(X−E[X])2]≤E[(b−a)2]=(b−a)2.
On the other hand one can find it with the factor 1/4 under the name Popoviciu's_inequality on wikipedia.
This article looks better than the wikipedia article ...
For a uniform distribution it holds that Var(X)=(b−a)212.