2
Оцінка коваріаційного заднього розподілу багатоваріантного гаусса
Мені потрібно «навчитися» розподілу біваріантного гаусса з кількома зразками, але гарна гіпотеза щодо попереднього розподілу, тому я хотів би скористатися байєсівським підходом. Я визначив своє попереднє: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ \mathbf{\Sigma_0} = \begin{bmatrix} 16 & 0 \\ …